

www.latticesemi.com

1

tn1020_04.2

sysHSI

Block
Usage Guidelines

April 2006 Technical Note TN1020

™

Introduction

As demand for bandwidth increases in this information-based society, communications systems with advanced
technologies are emerging to meet such demand. Embedding clocks into serial data streams is a popular tech-
nique in high-speed data communications systems applications. The embedded clock is recovered at the receiver
by a Clock Data Recovery (CDR) circuit. Source-Synchronous mode provides another way of achieving a high
speed data rate without embedding the clock. Low voltage differential signaling can be adopted to improve signal
integrity while simultaneously reducing power and emissions. Common differential standards in use include LVDS,
BLVDS and LVPECL. For more information on these standards please refer to Lattice technical note TN1000,

sysIO™ Usage Guidelines for Lattice Devices.

Lattice provides sysHSI™ blocks on certain devices to support both embedded clock and source-synchronous
clocking applications. This capability is combined with sysIO interfaces that provide support for a variety of stan-
dards including LVDS and BLVDS. The body of this document describes common aspects of the sysHSI block. The
appendices detail device specific information.

Modes of Operation

The sysHSI block can be operated in a number of modes. In Clock Data Recovery (CDR) mode, clock is encoded
in the data stream and CDR recovers this clock from the incoming data. In Source-Synchronous mode, the clock is
transmitted along with data via a separate channel.

Three fuse programmable modes and their related system specifications are summarized in Table 1.

Table 1. Fuse Programmable Modes

CDR Modes

As noted previously, some users embed clocks in serial data streams to achieve higher data transfer rates. This is
achieved by encoding the transmitted data in such a way as to ensure a minimum number of clock transitions. From
this minimum number of transitions a complete clock can be recovered at the receiver. This encoding scheme elim-
inates the need for a separate clock channel and assures that the clock and data are in phase. Thus, the CDR
mode enables higher bandwidth at lower cost.

The sysHSI block supports two encoding options. In both options the sysHSI block recovers data using 16 times
over-sampling. This leads to better performance than many other solutions that use lower over-sampling rates.

SERDES without Encoding/Decoding

This mode supports serial links that use the common 8B/10B encoding scheme. With this scheme, eight bits of
data are encoded into 10 bit symbols to ensure a minimum of 40% transition in every 10-bit code.

Mode
Data
Code

Serial Data
Rate (Mbps)

Pay Load
Data Rate

(Mbps)

Parallel
Data/Clk

(MHz)
Parallel Data

Width

Serial/
Parallel
Ratio

Symbol
Alignment

Pattern
CDR

Support

SERDES without
Encoding/Decoding 8B/10B 400 to 800 320 to 640 40 to 80 10b

Encoded 10 K28.5 +/- CDR

SERDES with
Encoding/Decoding 10B/12B 400 to 800 333 to 666 33.3 to 66.6 10b

Raw Data 12 SymPat CDR

Source-Synchronous
(n channels) N/A 400 to 800 n x (400

to 800)

50 to 100
67 to 133

100 to 200

n x 8b
n x 6b
n x 4b

8
6
4

SymPat De-skew

Lattice Semiconductor sysHSI Block Usage Guidelines

2

In 8B/10B mode, the sysHSI block does not encode or decode the data. The block receives encoded 8B/10B data
as 10-bit wide parallel data and transmits it serially. It receives serial data and converts it to 10-bit wide 8B/10B
encoded data. This data can be re-transmitted or decoded elsewhere, dependent on the application needs.

SERDES with Encoding (10B/12B Encoding and Decoding is done by sysHSI Block)

This mode supports serial links that use 10B/12B encoding. This high speed serial data format consists of 10 data
bits plus two fixed insertion bits (01) to ensure a minimum of two transitions for every 12 bits in the serial data
stream.

Source-Synchronous (SS) Modes

Some users implement source-synchronous clocking to achieve high speed data transfer. Here the clock is trans-
mitted along with the data. This removes the propagation delay between the transmitter and receiver as a limit on
clock speed and performance. Skew control and other factors limit the maximum performance that can be achieved
using this method of data transfer.

Multiple sysHSI blocks can be combined to create source-synchronous interfaces of different widths. The maximum
width supported is device dependent, see appendices for details.

A calibration cycle allows the CDR circuitry to be used to select per channel different phases of the incoming clock
with which to capture the incoming data. This allows the device to compensate for fixed system level skews. Thus
allowing designers to achieve higher performance by conducting a calibration cycle at system start up.

sysHSI Block

Each sysHSI Block includes two SERDES units and one CSPLL. Each SERDES unit consists of one receiver and
one transmitter circuit block. Each pair of receiver and transmitter can be used as a full duplex channel. For receiv-
ing, the SERDES receives high speed serial input data stream from the sysIO differential input buffer and provides
low speed parallel data associated with recovered clock to synchronizer or core logic. For transmitting, the SER-
DES converts the parallel low speed data to high speed serial data stream and sends the data to the sysIO LVDS
differential output buffers. Figure 1 shows high level representation of a sysHSI Block.

Figure 1. sysHSI Block Diagram

SS MODE ONLY

sysIO

CORE
LOGIC

CORE
LOGIC

HSTCLK HSRCLK

sysHSI Block

TXD_A

TXD_B

RXD_B

RXD_A

REFCLK from
CLOCK TREE

TRANSMITTER

RECEIVER

TRANSMITTER

CSPLL

RECEIVER

SERDES (HSI_A)

SS_CLKOUT

SS_CLKIN

SOUT_A

SIN_A

SOUT_B

SIN_B

Synchro-
nizer

Synchro-
nizer

SERDES (HSI_B)

Lattice Semiconductor sysHSI Block Usage Guidelines

3

There is always a 10-bit wide data transmitted or received at the low speed side of the SERDES for both 10B/12B
and 8B/10B modes. In 10B/12B encoding mode, the start bit(1) and stop bit(0) are added or removed within the
sysHSI Block. In SERDES mode without encoding/decoding, (currently 8B/10B mode is supported), the encoding
and decoding is done outside of the sysHSI Block where 10-bit wide data is expected at the low speed side of the
SERDES. This is why the number of data bits at the parallel interface for 10B/12B and 8B/10B are same. In
Source-Synchronous Mode, the low speed parallel data bits can be programmed to 4, 6 or 8.

The recovered clock is asynchronous to the on-chip reference clock. The maximum allowance of frequency devia-
tion is 100 ppm. This interprets that at every 10,000 clock period one clock may be offset from the other by one full
clock period. The solution to this problem is to use a synchronizer. In systems where frequency deviation is not a
problem, this synchronizer can be bypassed. If desired, the recovered clock and data can be routed to the I/Os and
the synchronization can be done off-chip.

The basic functional blocks in the sysHSI Block may be divided by three different functional blocks; Receiver,
Transmitter and Clock Synthesizer Phase Locked-Loop. Figure 2 illustrates these functional blocks.

Figure 2. sysHSI Block Detail Diagram

SYDT

SIN

CDRRST

CAL

REFCLK

Note: The transmitter and receiver pair above establishes one full duplex channel and is half of a sysHSI Block.
The CSPLL is shared by both SERDES.

RXD(0:9)Clock Recovery

Data Recovery

DE-SERIALIZER

CDRPLL

RECEIVER

CSLOCK

SS_CLKIN

HSRCLK
(0:15)

HSTCLK

SS_CLKOUT
CSPLL

SERIALIZERTXD(0:9)

SOUT
TRANSMITTER

SERDES (HSI_A)

RECCLK1/V

1/V
x V

sysHSI Block

SERDES (HSI_B)

RECEIVER

Phase
Select

Lattice Semiconductor sysHSI Block Usage Guidelines

4

CSPLL: Clock Synthesizer PLL

CSPLL (Clock Synthesizer PLL) multiplies low speed reference clock by the factor of v to achieve an high speed
serial data rate clock. The low speed reference clock input can be either from a chip internal clock, REFCLK, or
from an external differential clock input, SS_CLKIN. Also, there are four choices for the internal clock to increase
the flexibility. User can select one of four clocks available. See Appendices C and D for detail.

The multiplication factor, v, is the ratio of high speed vs. low speed. It can be 4, 6, or 8 for Source-Synchronous
mode, 12 for 10B/12B and 10 for 8B/10B mode. CSPLL contains a fully monolithic analog PLL which does not
require any external component. For a transmitter, the HSTCLK (High Speed Transmit Clock) is generated from
REFCLK multiplied by a factor of v, and is used to clock the high speed Serial Data Output.

For CDR operation, the CSPLL combined with a phase interpolation circuit, generates 16-phase high speed
Clocks, HSRCLK<0:15>(High Speed Receive Clock). At 800Mbps data rate, these 16 over-sampling phases
achieve a resolution of 78.1ps.

Figure 3. CSPLL

Clock and Data Recovery

Each receiver channel has its own CDRPLL (Digital Phase-Locked Loop: DPLL) for Clock Data Recovery. The
Clock Recovery module first extracts the embedded high speed clock from the Input Serial Data Stream by means
of the CDRPLL. Then the Data Recovery Module uses the recovered clock to read the data from the high speed
Input Serial Data Stream.

The recovered high speed clock is divided by the factor, v, and aligned to produce the low speed clock, RECCLK
(RECovered CLocK). CDR then de-serializes the recovered high speed Serial Data into low speed Parallel Data.
This RECCLK and parallel data are sent to the synchronizer or core logic.

Figure 4. Clock and Data Recovery Block

CSPLL HSRCLK (0:15)

1/16th
Phase
Shifter

Phase Select from CDR

M div

SS_CLKIN

REFCLK

HSRCLK

HSTCLKPD

V div

N div

VCO

SS_CLKOUT

CSLOCK

SIN

CDRRST

Clock / Data Recovery

Phase Select(0:15)

Recovered Serial Data

Align
Recovered
HSR Clock

SYDT

1/ V

SYMBOL
DETECT

CDRPLL

Phase
Detect Digital

Filter
Phase
Shift

RECCLK

Lattice Semiconductor sysHSI Block Usage Guidelines

5

Serializer/De-Serializer (SER/DES)

Serializer

The transmitter receives low speed parallel data, TXD, from the Core Logic. TXD data is clocked by REFCLK from
the clock tree (or SS_CLKIN in SS mode). The CSPLL multiplies REFCLK by a factor of v to generate HSTCLK.
The transmitter converts the low speed parallel Data, TXD, into a high speed Serial Data Stream, SOUT, that is run-
ning at HSTCLK.

Figure 5. Serializer [SS, 8B/10B]

The alignment circuit synchronizes REFCLK and HSTCLK with the edge detect circuit to align SOUT with HST-
CLK.

The 10B/12B Serializer has a built-in encoder circuit. The encoder adds Start bit(1) in front of parallel data and stop
bit(0) at the end.

Figure 6. Serializer [10B/12B]

De-Serializer

Receiver receives high speed serial data stream, SIN, from sysIO and De-Serializes into low speed Parallel Data,
RXD, before it sends to Synchronizer or core logic.

HSTCLK from CSPLL

LS Clock

(HSTCLK ÷ v)
from CSPLL

SERIALIZER
[SS, 8B/10B]

(SOUT)
to sysIO

Differential

Output Buffer

Qv-1

Q2

Q1

Q0

Parallel Load
Register

Qv-1

Q2

Q1

Q0

Parallel Sync
Register

Qv-1

Q2

Q1

Q0

Shift Register

Align

Parallel Load

v
B

it
W

id
e

P
ar

al
le

l D
at

a
(T

X
D

)
fr

om
 S

yn
ch

ro
ni

ze
r

or
 C

or
e

Lo
gi

c

Q2

Q1

Q0

Shift Register
SERIALIZER

[10B/12B] Stop
bit

Start
bit

(SOUT)

to sysIO
Differential

Output Buffer

Q9

HSTCLK from CSPLL

LS Clock
(HSTCLK ÷ 12)

from CSPLL
Align

Qv-1

Q2

Q1

Q0

Parallel Load
Register

Qv-1

Q2

Q1

Q0

Parallel Sync
Register

Parallel Load

v
B

it
W

id
e

P
ar

al
le

l D
at

a
(T

X
D

)
fr

om
 S

yn
ch

ro
ni

ze
r

or
 C

or
e

Lo
gi

c

Lattice Semiconductor sysHSI Block Usage Guidelines

6

Figure 7. De-Serializer [SS, 8B/10B]

10B/12B De-Serializer decodes incoming serial data, disregarding the first bit (start bit) and the last bit (stop bit) of
a received symbol before serial-to-parallel conversion.

Figure 8. De-Serializer[10B/12B]

Synchronizer

In the Receiver, the sysHSI Block writes with the Recovered Clock (RECCLK) and the Core Logic uses the system
clock (usually REFCLK) to read. Depending on the device, FIFO or the Embedded Memory Block are used as a
synchronizer. The use of a synchronizer is optional and may be bypassed if the user performs synchronization out-
side of the device.

Parallel Transmit Data enters the Transmitter of the sysHSI block from core logic clocked by REFCLK. The REFCLK
at the same time is fed to CSPLL to generate the high speed Clock to transmit serialized data (HSTCLK). In the
Transmitter, the REFCLK is re-aligned by the high speed clock to generate the parallel load clock to the Serializer
shift register. If the skew between the REFCLK and the high speed Clock at Transmitter is larger than one high
speed clock cycle then a synchronizer is required. Since the CSPLL drives only two transmitter and two receiver
channels, the skew is manageable at 1 Gbps without a synchronizer. Figure 9 shows the synchronizer interface
between core logic and receiver.

RXD

Qv-1

Q2

Q1

Q0

Shift RegisterRecovered
Serial Data

Recovered

HSRCLK

Qv-1

Q2

Q1

Q0

Parallel Load

RegisterDE-SERIALIZER
[SS, 8B/10B]

LS Clock (HSRCLK ÷ v = RECCLK)

One of 16
Phase-shift

CLK
(HSRCLK)

from CSPLL

(SIN)
from sysIO
Differential
Input Buffer

v
B

it
W

id
e

P
ar

al
le

l D
at

a
(T

X
D

)
fr

om
 S

yn
ch

ro
ni

ze
r

or
 C

or
e

Lo
gi

c

C
lo

ck
 D

at
a

R
ec

ov
er

y
C

irc
ui

t (
C

D
R

P
LL

)

RXD

Q2

Q1

Q0

Shift RegisterRecovered
Serial Data

Recovered
HSRCLK

Q9

Q2

Q1

Q0

(SIN)
from sysIO
Differential
Input Buffer

One of 16
Phase-shift CLK

(HSRCLK)
from CSPLL

Parallel Load
Register

DE-SERIALIZER
[10B/12B]

LS Clock (HSRCLK ÷ 12 = RECCLK)

Q9

Stop

bit

Start
bit

C
lo

ck
 D

at
a

R
ec

ov
er

y
C

irc
ui

t (
C

D
R

P
LL

)

10
-b

it
W

id
e

P
ar

al
le

l R
aw

 D
at

a
to

S
yn

ch
ro

in
ze

r
or

 C
or

e
Lo

gi
c

Lattice Semiconductor sysHSI Block Usage Guidelines

7

Figure 9. Synchronizer

High Speed Loop Back Mode

In High Speed Loop Back (HSLB) mode, the transmitter output is looped back to the receiver input and the receiver
uses the High Speed Transmitter Clock (HSTCLK) as its high speed clock. In this mode, Serializer, De-Serializer
and CSPLL are running at full clock speed while the CDRPLL and differential I/Os are bypassed. This mode can be
used to test a sysHSI Block in the ATE tester. The ATE only needs to provide parallel transmit data[TXD(0:9)] and
analyze parallel receive data[RXD(0:9)]. Figure 10 shows the High Speed Loop Back mode diagram.

Figure 10. High Speed Loop Back Mode Diagram

sysHSI Block and Source-Synchronous Mode with Multiple Data Channels

Each chip includes two groups of sysHSI Blocks. All sysHSI Blocks of the same group share the same LVDS clock
input/output in Source-Synchronous mode.

In this mode, a whole group or a portion of a group can be used. The LVDS Clocks, SS_CLKIN and SS_CLKOUT,
are connected to dedicated pins. Refer to Appendices C and D for detail.

Each group can be configured as either Receive mode or Transmit mode but not both. In Receive mode, the incom-
ing LVDS Clock (SS_CLKIN) is the input clock to CSPLL as a reference clock. In Transmit mode, the reference
clock source is one of four clocks from the Clock Tree. The LVDS output Clock, SS_CLKOUT is generated from the

Synchronizer

Write
Data

Read
Data

Write
CLK Read

CLK

CORE
LOGIC

REFCLK from Clock Tree

SYNCHRONIZING RECOVERED DATA WITH CORE LOGIC

(SIN)
LVDS
Data

(SS_CLKIN)
LVDS
Clock

Receiver

RXD

Write Enable

RECCLK

Write
EN

CSPLL

CDRRST

CSLOCK

CSPLL

REFCLK

RXD(0:9)

RECCLK
Clock Recovery
Bypass Mode

Data Recovery

HSTCLK

CDRPLL

x V

Serializer

Transmitter

TXD(0:9)

HSTCLK

SIN

SOUT

De-
Serializer

3.5 Bit
Retimer

Lattice Semiconductor sysHSI Block Usage Guidelines

8

CSPLL of the dedicated sysHSI Block in each group. Refer to Appendices C and D for the sysHSI Block Usage
Map.

An example of Source-Synchronous Mode Block diagram is shown in Figures 11 and 12. Figure 11 illustrates how
the HSI circuit is implemented in Source-Synchronous Receiver Mode. The example uses three sysHSI Blocks
(numbers 1, 2 and 3 in group1) and consists of six data channels and one clock channel. The parallel data bit width
is 8. Refer to Appendices C and D for sysHSI Block numbering and dedicated sysHSI Blocks.

Figure 11. Source-Synchronous Mode Example Diagram (CDRX_SS_8)

Figure 12 shows the Source-Synchronous transmitter mode. The example uses two sysHSI Blocks (numbers 4 and
5 in group 2) and consists of four data channels and one clock channel. The parallel data bit width is 4.

sysIO

6 DATA CHANNELS and 1 CLOCK CHANNEL for CDRX_SS_8 Mode

CSPLL

CORE
LOGIC

TRANSMITTER

RECEIVER
HSI_ASIN_A

CORE
LOGIC

TRANSMITTER

RECEIVER
HSI_BSIN_B

SS_CLKIN

CSPLL

CORE
LOGIC

TRANSMITTER

RECEIVER
HSI_ASIN_A

CORE
LOGIC

TRANSMITTER

RECEIVER
HSI_BSIN_B

CSPLL

CORE
LOGIC

TRANSMITTER

RECEIVER
HSI_ASIN_A

CORE
LOGIC

TRANSMITTER

RECEIVER
HSI_BSIN_B

sysHSI Block_1

CSPLL

sysHSI Block_2

sysHSI Block_3

SYNCHRO
NIZER

RXD_A

RECCLK_A

SYNCHRO
NIZER

RXD_B

RECCLK_B

SYNCHRO
NIZER

RXD_A

RECCLK_A

SYNCHRO
NIZER

RXD_B

RECCLK_B

SYNCHRO
NIZER

RXD_B

RECCLK_B

SYNCHRO
NIZER

RXD_A

RECCLK_A

8

8

8

8

8

8

Lattice Semiconductor sysHSI Block Usage Guidelines

9

Figure 12. Source-Synchronous Mode Example Diagram (TX_SS_4)

Using sysHSI Blocks in Design Tools

Introduction to Macros

sysHSI Block Usage in CDR Mode

When both channels are used in a same sysHSI Block, they must share the same REFCLK, HSRCLK (High Speed
Receiver Clock) and HSTCLK (High Speed Transmitter Clock) from the CSPLL. Multiple modes may be imple-
mented using different sysHSI Blocks but the user must take phase jitter from different clock sources into consider-
ation. This jitter increase may cause both receiver and transmitter performance to fall outside the guaranteed
specifications.

The two SERDES Blocks, HSI_A and HSI_B, in the same sysHSI Block are independent from each other except
sharing the same REFCLK and CSPLL.

sysHSI Block USAGE in Source-Synchronous Mode

When sysHSI Blocks are configured in the Source-Synchronous mode, the whole group is not available for other
modes. But the sysIOs of unused sysHSI channels are available for other general I/O uses.

Macro Symbols

Thirteen functional macro modules are available representing seven different applications. These programmable
modules are described in Table 2. Additionally, two macros are provided for high speed loop back testing and are
supported for 8B/10B and 10B/12B modes.

sysIO

4 DATA CHANNELS and 1 CLOCK CHANNEL for TX_SS_4 Mode

CORE
LOGIC

CORE
LOGIC

SS_CLKOUT

CSPLL

CORE
LOGIC

TRANSMITTER

RECEIVER

HSI_A

SOUT_A

CORE
LOGIC

TRANSMITTER

RECEIVER

HSI_B

SOUT_B

sysHSI Block_5

CSPLL

TRANSMITTER

RECEIVER

HSI_A

SOUT_A

TRANSMITTER

RECEIVER

HSI_B

SOUT_B

sysHSI Block_4

TXD_A

TXD_B

4

4

TXD_A

TXD_B

4

4

REFCLK from
CLOCK TREE

Lattice Semiconductor sysHSI Block Usage Guidelines

10

Table 2. Macro Definitions

sysHSI Block and CSPLL I/O Description

CSPLL I/O Description

REFCLK*

 Reference Clock Input from Clock Tree. Used as Transmitter low speed Clock and Receiver Fre-
quency Reference for Receiver. When this clock is used sysCLOCK PLL must be in Bypass Mode.
User can select one of 4 REFCLKs available from the clock tree. Refer to Appendices C and D for
available clocks at each sysHSI Block.

CSLOCK*

 “1” indicates CSPLL is locked to SS_CLKIN for Source-Synchronous mode, and for CDR mode,
“1” indicates CSPLL is locked to REFCLK.

SS_CLKIN

Receiver Input Clock from LVDS Input Buffer to CSPLL as the Reference Clock in Source-Syn-
chronous Mode. This clock input must be up and running at power up or system reset for at least
10 us to let CSPLL complete lock-in and active all the time to keep CSPLL stay lock. For low speed
data communication this clock is not required. There are two SS_CLKIN input pin pairs, one on
each sysHSI Group.

SS_CLKOUT

Transmitter output Clock from CSPLL to LVDS Output Buffer. Only one clock is needed from desig-
nated sysHSI Block CSPLL on each sysHSI Group. See Appendices C and D for location of desig-
nated sysHSI Block. For low speed data communication this clock is not required.

*Note: If both SERDES blocks are used in the same sysHSI Block, CSLOCK and REFCLK may be specified only
once because CSPLL is shared. If both SERDES blocks specify these signals, they must refer to the same net
names in the upper module.

sysHSI Block I/O Description

SIN

Serial input Data from LVDS Input Buffer.

SOUT

Serial output Data to LVDS Output Buffer.

CDRRST

The CDRRST resets CDR to start “lock-in” process. At the chip level, CDRRST is user-controllable
per the CDR channel. Minimum pulse width is three REFCLK cycles. The active level of this signal
is “1” in ispXPGA

®

 and “0” in ispGDX2™. This reset signal also resets the transmitter registers.

RXD*

Receiver Output low speed Parallel Data to Core logic.

TXD*

Transmitter Input low speed Parallel Data from Core logic.

RECCLK

Receiver Output low speed recovered Clock.

SYDT

Symbol Detected. When the minimum number of synch patterns specified in Appendix C are
received, bit synchronization is completed, clock recovery is finished and byte synchronization

Mode Symbol Description

SS
CDRX_ SS_x

1

SS De-skew receive mode

TX_ SS_x

1

SS transmit mode

10B12B
CDRX_10B12B 10B/12B CDR receive mode

TX_10B12B 10B/12B transmit mode

8B10B
CDRX_8B10B 8B/10B CDR receive mode

TX_8B10B 8B/10B transmit mode

8B10B HSLB_8B10B 8B/10B High Speed Loop Back mode

10B12B HSLB_10B12B 10B/12B High Speed Loop Back mode

1. x: data width, 4, 6 or 8.

Lattice Semiconductor sysHSI Block Usage Guidelines

11

begins. SYDT is set to “1” if RXD data matches the synch pattern. The falling edge of this signal
can be used as the beginning of real data.

CAL

From chip pin, “1” enables CDR calibration for CDRX_SS mode, rising edge resets the CDR to
start lock-in process, falling edge latches the CDR calibration results by forcing its Push Pull to “0”
to stay. Only one I/O pin is needed per group. In ispGDX2 devices, only one pin is provided for both
sysHSI groups.

Note *: The width of RXD and TXD; For SS: x = 4, 6, or 8 bit wide.
10B/12B: 10bit wide (Encoding and Decoding is done in HSI module).
8B/10B: 10bit wide (Encoding and Decoding is not done in HSI module).

Table 3 summarizes the sysHSI Block I/O usage for each macro

Table 3. sysHSI IO Usage for Each Macro

Port I/O

SS 10B/12B 8B/10B

CDRX TX CDRX TX CDRX TX

REFCLK I X X X X X

SS_CLKIN I X

SS_CLKOUT O X

CSLOCK O X X X X X X

SIN I X X X

SOUT O X X X

CDRRST I X X

RXD O X X X

TXD I X X X

RECCLK O X X X

SYDT O X X X

CAL I X

Lattice Semiconductor sysHSI Block Usage Guidelines

12

User Parameters

SYMPAT

Symbol Alignment Pattern. After CDR Locks in with Synchronization Pattern at high speed bits, the
high speed serial data is converted to low speed parallel data and CDR performs Symbol Align-
ment. A 20 bits- or 12 bits-deep Comparator is used for Symbol Alignment Pattern. Each macro
has its own default pattern (Table 4), but users can use their own patterns. In this case, users must
rely on their own characterization of performance. The leading bit corresponds to the first bit
received.

Table 4. Default Symbol Alignment Patterns

Synchronization patterns are not automatically output in 10B/12B and Source-Synchronous Transmit modes.

The logic that drives sysHSI Block in 10B/12B and Source-Synchronous Transmit mode must output at least 2,048
synchronization patterns as preamble before the real data packet.

•

Synchronization (bit alignment):

 This process is the clock and data recovery performed by the CDR PLL.
The high speed clock generated by CSPLL is synchronized to incoming data bits.

•

Symbol Alignment (byte alignment):

 When synchronization is finished, the next step is Symbol Alignment
or ‘Byte Alignment’. This process finds the word boundary.

IN_FREQ

The IN_FREQ attribute specifies the frequency of REFCLK (SS_CLKIN for Source-Synchronous
mode) input to CSPLL in MHz. See Parallel Data/Clk column in Table 1.This attribute is a manda-
tory input.

Table 5 summarizes these attributes.

Table 5. sysHSI Block Attributes

Function Mode
Symbol Alignment Pattern

1

(Byte Alignment)
Synchronization Pattern

(Bit Alignment)

CDRX_8B10B 11000001010011111010 K28.5, D21.4, D21.5, D21.5 (Idle Pattern)

2

CDRX_10B12B 111111000000 111111000000

CDRX_SS_4 110011001100 1100

CDRX_SS_6 111000111000 111000

CDRX_SS_8 000011110000 11110000

1. The left most bit of the Symbol Alignment Pattern is the LS Bit and transmitted or received first. These patterns are default patterns for
each CDR macro and are transparent to users when using sysHSI macros provided by Lattice.

2. 0011111010, 1010101101, 1010101010, 1010101010

Attribute Description Optional

IN_FREQ Frequency of Reference Clock (REFCLK or SS_CLKIN). No

SYMPAT Symbol alignment pattern. Yes

1

1. This attribute is optional only when users use their own pattern with Lattice-supported sysHSI macros. In this case,
the AC and DC specifications of the data sheet do not apply.

Lattice Semiconductor sysHSI Block Usage Guidelines

13

Macros Symbols of sysHSI Block

Twelve symbols are shown in Figure 13.

Note: A SERDES unit can be configured as either a transmitter or a receiver. In CDR modes, both Receiver and
Transmitter can be configured in the same SERDES block, but in Source-Synchronous mode they cannot co-exist
because the Receiver and Transmitter cannot share SS_CLKIN as a Reference Clock.

Figure 13. sysHSI Macro Symbols

CDRX_SS_4

SIN
SS_CLKIN

RECCLK
CSLOCK

CAL

SYDT

RXD3
RXD2
RXD1
RXD0

CDRX_SS_6

SIN
SS_CLKIN

RECCLK
CSLOCK

CAL

SYDT

RXD3
RXD2
RXD1
RXD0

RXD5
RXD4

CDRX_SS_8

SIN
SS_CLKIN

RECCLK
CSLOCK

CAL

SYDT

RXD3
RXD2
RXD1
RXD0

RXD5
RXD4

RXD7
RXD6

TX_SS_4

SOUT
SS_CLKOUT

REFCLK

CSLOCK

TXD3
TXD2
TXD1
TXD0

TX_SS_6

SOUT
SS_CLKOUT

REFCLK

CSLOCKTXD3
TXD2
TXD1
TXD0

TXD5
TXD4 TX_SS_8

SOUT
SS_CLKOUT

REFCLK

CSLOCK

TXD3
TXD2
TXD1
TXD0

TXD5
TXD4

TXD7
TXD6

CDRX_10B12B

SIN
REFCLK
CDRRST

RECCLK
CSLOCK

SYDT

RXD3
RXD2
RXD1
RXD0

RXD5
RXD4

RXD7
RXD6

RXD9
RXD8

CDRX_8B10B

SIN
REFCLK
CDRRST

RECCLK
CSLOCK

SYDT

RXD3
RXD2
RXD1
RXD0

RXD5
RXD4

RXD7
RXD6

RXD9
RXD8

TX_10B12B

REFCLK

SOUT
CSLOCK

TXD3
TXD2
TXD1
TXD0

TXD5
TXD4

TXD7
TXD6

TXD9
TXD8

TX_8B10B

REFCLK

SOUT
CSLOCK

TXD3
TXD2
TXD1
TXD0

TXD5
TXD4

TXD7
TXD6

TXD9
TXD8

HSLB_10B12B

REFCLK
CDRRST

RECCLK
CSLOCK

RXD3
RXD2
RXD1
RXD0

RXD5
RXD4

RXD7
RXD6

RXD9
RXD8

TXD3
TXD2
TXD1
TXD0

TXD5
TXD4

TXD7
TXD6

TXD9
TXD8

HSLB_8B10B

REFCLK
CDRRST

RECCLK
CSLOCK

RXD3
RXD2
RXD1
RXD0

RXD5
RXD4

RXD7
RXD6

RXD9
RXD8

TXD3
TXD2
TXD1
TXD0

TXD5
TXD4

TXD7
TXD6

TXD9
TXD8

Lattice Semiconductor sysHSI Block Usage Guidelines

14

HSLB_10B12B and HSLB_8B10B

The HSLB_10B12B and HSLB_8B10B macros are used to configure the sysHSI block in Loop-Back mode. The
High Speed Loop-Back (HSLB) mode provides offline testing capability of the sysHSI Block to ensure the integrity
of the high speed channel. In High Speed Loop Back (HSLB) Mode, the transmitter output, SOUT, is looped back to
SIN of the receiver and the receiver high speed clock utilizes the transmitter’s HSTCLK. In this mode, Serializer,
Data Recovery, De-serializer, and CSPLL are running at full Serial Clock speed while the CDRPLL, SIN and SOUT
are bypassed.

sysIO Usage with sysHSI Block

The sysIO circuitry converts the differential LVDS signal to a single logic signal in the device, referred to as sysIO
LVDS and BLVDS. For Point-to-Point and single terminated Multi-Drop applications, the 3.5 mA LVDS current driver
is used. Multi-Point and double terminated Multi-Drop applications require higher driving capacity. The Lattice
ispGDX2 family offers a 10.7 mA BLVDS driver for this type of application. The sysIOs of unused sysHSI channels
are available for other general sysI/O uses.

sysIO LVDS/BLVDS/LVPECL Macro Definition

The sysIO LVDS/BLVDS/LVPECL macros are simply input (LVDSIN/BLVDSIN/LVPECLIN), output (LVD-
SOUT/BLVDSOUT/LVPECLOUT), tri-state output (LVDSTRI/BLVDSTRI/LVPECLTRI), and bi-directional buffers
(LVDSIO/BLVDSIO/LVPECLIO).

LVPECL macros are not available in sysHSI Block applications. In the ispXPGA device family, no BLVDS macros
are available for sysHSI Block applications.

For more information on these differential buffers, refer to Lattice technical note TN1000,

sysIO Usage Guidelines
for Lattice Devices.

Figure 14. sysIO LVDS/BLVDS/LVPECL Macro Symbols

When macros LVDSIN and LVDSOUT are associated with SS_CLKIN and SS_CLKOUT respectively, the P_IN,
N_IN, P_OUT and N_OUT must use dedicated pairs of pins in the sysHSI group.

Note: LVDSIO and BLVDSIO are not supported when these differential I/Os are used in conjunction with the
sysHSI block.

sysIO LVDS and BLVDS IO_TYPES Usage with HDLs

Refer to Appendix B.

(B)LVDSIN
LVPECLIN

P_IN

N_IN
O

(B)LVDSOUT
LVPECLOUT

I
P_OUT

N_OUT

(B)LVDSTRI
LVPECLTRI

I
P_OUT

N_OUT

OE

(B)LVDSIO
LVPECLIO

P_IO

N_IO

OE
O

I

Lattice Semiconductor sysHSI Block Usage Guidelines

15

Appendix A. sysHSI Usage with HDLs
Synthesis tools from Mentor Graphics® and Synplicity® “black-box” the VHDL and Verilog instantiations and pass
them through an EDIF netlist to the Lattice software. The Lattice software converts the “black-box” into the physical
representation of the sysHSI within the device using the macros defined above. Verilog and VHDL pass the sysHSI
attributes through parameters and generics, respectively.

The ispLEVER supports sysHSI in Module/IP Manager. Users do not have to write the complicated instantiations in
the source code.

Including sysHSI in a Design
The sysHSI capability can be accessed either through the Module/IP Manger or directly instantiated in a design’s
source code. The following sections describe both methods.

sysHSI Usage in Module/IP Manager
sysHSI is fully supported in the Module/IP Manager in the ispLEVER software. The Module/IP Manager allows the
user to define the desired sysHSI primitive using a simple, easy-to-use GUI. Following definition, a VHDL or Verilog
module that instantiates the desired sysHSI primitive is created. The module can be included directly in the user’s
design.

Figure 15 shows the ispLEVER main window when sysHSI is selected. The only entry required in this window is
the module name. After entering the module name, clicking on “Customize” will open the “General Options” window
as shown in Figure 16.

Figure 15. Module/IP Manager Main Window

Lattice Semiconductor sysHSI Block Usage Guidelines

16

Customizing the Module
The Customizing window provides the ability to define the following:

• Macro Type: sysHSI Block Primitive

• Input Frequency

• Symbol Alignment Pattern

• Signal Names

Clicking ‘Generate” creates a VHDL (module name .vhd) or Verilog (module name.v) file in the working directory
that instantiates the core. At the same time a parameter file (module name.lpc) file is created in the working direc-
tory. The Load Parameters button can be used to reload configurations from previously created parameter files
(*.lpc files).

Figure 16. Customizing Window

Direct Instantiation Into Source Code
If desired, the Module/IP Manager can be bypassed and the sysHSI Block instantiated directly in the source code.
The following section provides examples of source code generated by the Module/IP Manager. These examples
can be used as templates for directly instantiating the sysHSI Block in the source code.

Source Code Examples Generated by Module/IP Manager
Below are VHDL and Verilog examples generated by Module/IP Manager.

ispGDX2 source code is identical with XPGA source code with one exception.

The reset inputs to sysHSI block and FIFO in ispGDX2 is active low in silicone. The definition of reset for synthesis
and simulation is active high for both ispXPGA and ispGDX2. For this reason, the reset statement in the ispGDX2
source code must be inverted as shown in bold italic coding.

Lattice Semiconductor sysHSI Block Usage Guidelines

17

CDRX_8B10B (Verilog)
//This design can be synthesized by Synplify and LeonardoSpectrum.
//It contains attributes for both synthesis tools.

module cdrx_8b10b_top (refclk, cdrrst, rxd_p, rxd_n, rxd0, rxd1,rxd2, rxd3, rxd4, rxd5,
rxd6, rxd7, rxd8, rxd9, recclk, cslock, sydt);

input refclk, cdrrst, rxd_p, rxd_n;
output rxd0, rxd1, rxd2, rxd3, rxd4, rxd5, rxd6, rxd7, rxd8, rxd9, recclk, cslock,

sydt;

wire sin;

LVDSIN I1 (.P_IN(rxd_p), .N_IN(rxd_n), .O(sin));
defparam I3.in_freq = "60";
defparam I3.sympat = "11000001010011111010";

CDRX_8B10B I3 (.SIN(sin), .REFCLK(refclk), .CDRRST(cdrrst[!cdrrst]), .RXD0(rxd0), .RXD1(rxd1),
.RXD2(rxd2), .RXD3(rxd3), .RXD4(rxd4), .RXD5(rxd5), .RXD6(rxd6), .RXD7(rxd7),
.RXD8(rxd8), .RXD9(rxd9), .RECCLK(recclk), .CSLOCK(cslock), .SYDT(sydt)
);

// exemplar attribute I3 in_freq 60
// exemplar attribute I3 sympat 11000001010011111010

endmodule

CDRX_10B12B (VHDL)
library ieee;
use ieee.std_logic_1164.all;
library lattice;
use lattice.components.all;

entity cdrx_10b12b_top is
port (

rxd_p, rxd_n:in std_logic;
refclk:in std_logic;
cdrrst:in std_logic;
recclk:out std_logic;
cslock:out std_logic;
sydt:out std_logic;
rxd: out std_logic_vector(9 downto 0)
);

end cdrx_10b12b_top;

architecture behave of cdrx_10b12b_top is

component LVDSIN
port (
P_IN : in std_logic;
N_IN : in std_logic;
O : out std_logic

);
end component;

component CDRX_10B12B

Lattice Semiconductor sysHSI Block Usage Guidelines

18

generic(
in_freq:string
);

port (
SIN:in std_logic;
REFCLK:in std_logic;
CDRRST:in std_logic;
RXD0:out std_logic;
RXD1:out std_logic;
RXD2:out std_logic;
RXD3:out std_logic;
RXD4:out std_logic;
RXD5:out std_logic;
RXD6:out std_logic;
RXD7:out std_logic;
RXD8:out std_logic;
RXD9:out std_logic;
RECCLK:out std_logic;
CSLOCK:out std_logic;
SYDT:out std_logic
);

end component;

[signal notcdrrst : std_logic;]
signal sin: std_logic;

attribute IN_FREQ: string;
attribute IN_FREQ of I3: label is "50";

begin

[notcdrrst <= not cdrrst;]
I1: LVDSIN port map (P_IN => rxd_p, N_IN => rxd_n, O => sin);
I3: CDRX_10B12B

generic map(
in_freq=> "50"
)

port map(
SIN=> sin,
REFCLK=> refclk,
[CDRRST=> notcdrrst,]
CDRRST=> cdrrst,
RXD0=> rxd(0),
RXD1=> rxd(1),
RXD2=> rxd(2),
RXD3=> rxd(3),
RXD4=> rxd(4),
RXD5=> rxd(5),
RXD6=> rxd(6),
RXD7=> rxd(7),
RXD8=> rxd(8),
RXD9=> rxd(9),
RECCLK=> recclk,
CSLOCK=> cslock,

Lattice Semiconductor sysHSI Block Usage Guidelines

19

SYDT=> sydt
);

end behave;

endmodule

Functional Simulation in Modelsim
Module/IP Manager generates ‘module name_sim.vhd’ or ‘module_sim.v’ files for use in functional simulation.

Coding Tips for sysHSI Usage in HDLs
1. CAL: This signal is used in Source Synchronous receiver macros CDRX_SS_4, CDRX_SS_6 and

CDRX_SS_8. In ispXPGA devices, there are two CAL signal inputs, one for each group. In ispGDX2
devices, there is only one CAL for entire device. The instantiation of macros may share the same signal
name for the CAL inputs, or only one macro may specify the CAL signal. The SERDES Block (GDX Block
in the data sheet Logic Signals Connections table) where the CAL signal belongs is not available for the
receiver.

2. IN_FREQ: This attribute is a mandatory input and must meet the specification.

3. SYMPAT: Symbol Alignment Pattern. This attribute is user-transparent when sysHSI macros are used as
specified in the data sheet. This attribute is optional only when custom patterns are used. In this case, the
user must be aware that the specification in the data sheet is no longer valid.

4. Synchronization Pattern: This pattern must be transmitted a minimum of 2,048 times before actual data
for TX_10B12B and all Source Synchronous transmitters. In TX_8B10B, the idle pattern should be trans-
mitted a minimum of 960 times.

5. CSLOCK: This signal is the CSPLL lock indicator. One sysHSI Block includes two full-duplex channel with
two transmitters and two receivers. There a single CSPLL in each sysHSI Block. The four sysHSI macros
in an sysHSI Block share this CSLOCK signal. All four macros may share the same signal name for
CSLOCK or only one macro may specify the signal name for CSLOCK.

6. REFCLK: This reference clock is output from a four input MUX and can choose from four different global
clocks.The sysHSI Block shares one REFCLK, as in the CSLOCK case above.

ispGDX2 Pin Assignments

7. CSLOCK output is routed to dedicated output pin in the ispGDX2. When this signal output is not used, the
pin is available for other output signals.

8. RXD, RECCLK, SYDT (when used without FIFO) outputs are routed to the input register and to the Global
Routing Pool and may route to any pins available.

9. CDRRST pins are not available for other inputs. When the receiver is not used in a SERDES block but the
transmitter is used, this CDRRST pin must be tied to VCC.

sysHSI Macro

IN_FREQ Range (MHz)

V (HS/LS)

Serial Data Rate (Mbps)

Min. Max. Min. Max.

CDRX_8B10B, TX_8B10B 40.00 80.00 10 400 8001

CDRX_10B12B, TX_10B12B 33.34 66.67 12 400 8001

CDRX_SS_4, TX_SS_4 100.00 200.00 4 400 8001

CDRX_SS_6, TX_SS_6 66.67 133.33 6 400 8001

CDRX_SS_8, TX_SS_8 50.00 100.00 8 400 8001

1. The maximum serial data rate of 800Mbps applies to the fastest speed grade. Limit is 700Mbps for the lower speed grade.

Lattice Semiconductor sysHSI Block Usage Guidelines

20

10.RXD(0:9): These recovered parallel data occupy the I/O cells as specified in the data sheet. These signals
are routed to input registers, whether through FIFO or not, to the Global Routing Pool and to any pins avail-
able. The output pins of the I/O cells are available for other signals.

11.TXD(0:9): These transmit parallel data to transmitter occupy the I/O cells as specified in the data sheet.
These signals are muxed with FLAGs outputs [FIFO, PLLLOCK, CSLOCK, SYDT (with FIFO mode)]. The
I/O cells cannot share the TXD(0:9) and the FLAGs outputs. The I/O cells can share the TXD(0:9) and input
signals.

12.SYDT: Refer to note in Figure 24.

Lattice Semiconductor sysHSI Block Usage Guidelines

21

Appendix B. sysIO LVDS and BLVDS Usage with HDLs
The sysIO Differential Buffers are easily imported by instantiation.

The pin-lock of the sysIO Differential Buffer pins are optional. When instantiated without pin-lock, Lattice software
automatically assigns the differential pair of pins.

Attributes
Synplicity and Mentor Graphics synthesis support sysIO LVDS and BLVDS using attribute passing and the
IO_TYPES attribute with VHDL and Verilog much the same as pin locations, pull-ups, and slew rates are already
controlled. Similarly, ABEL HDL passes properties to the place and route tools as they are currently used.

Below is an example of how each HDL supports sysIO LVDS using the IO_TYPES attribute. Only the P-side pin is
required, the N-side is automatically assigned to the pair by the software.

Verilog with Synplify®

/* synthesis IO_TYPES=”LVDS,-” */;

Verilog with Precision® RTL Synthesis
// exemplar attribute [PinName] IO_TYPES LVDS,-;

VHDL
ATTRIBUTE IO_TYPES : string;
ATTRIBUTE IO_TYPES OF [PinName]: SIGNAL IS "LVDS,-";

ABEL
LAT_IOTYPE([PinName1]:[PinName2]:…:[PinNameN],LVDS,-);

Instantiation
Below is a Verilog example for instantiating these modules in the source code.

Table 6 lists acronyms that apply to the syntax.

Table 6. sysIO LVDS/BLVDS Acronyms

Instantiation Example in Verilog
(B)LVDSIN I1 (.P_IN(IN_P), .N_IN(IN_N), .O(NODE));
(B)LVDSOUT I2 (.I(NODE), .P_OUT(OUT_P),.N_OUT(OUT_N));
(B)LVDSTRI I3 (.I(NODE), .OE(OE), .P_OUT(OUT_P), .N_OUT(OUT_N));
(B)LVDSIO I4 (.I(NODE0), .OE(OE), .O(NODE1), .P_IO(IO_P), .N_IO(IO_N));

Acronym Definition

P_IN The p-side of the LVDS input

N_IN The n-side of the LVDS input

O The output of the LVDS input or bi-directional buffer

I The input of the LVDS output or bi-directional buffer

P_OUT The p-side of the LVDS output

N_OUT The n-side of the LVDS output

OE The output enable of the LVDS output or bi-directional buffer

P_IO The p-side of the LVDS bi-directional signal

N_IO The n-side of the LVDS bi-directional signal

Lattice Semiconductor sysHSI Block Usage Guidelines

22

Source Code Example in VHDL
library ieee;
use ieee.std_logic_1164.all;

entity LVDSIN_TOP is
port(LVDS_IN_P:instd_logic;
LVDS_IN_N:instd_logic;
EXOUT:OUTstd_logic);

end LVDSIN_TOP;

architecture BEHAVE of LVDSIN_TOP is

component LVDSIN
 port(P_IN:in STD_LOGIC;
 N_IN:in STD_LOGIC;
 O :out STD_LOGIC);
end component;

begin
I1: LVDSIN
port map (P_IN => LVDS_IN_P,

N_IN => LVDS_IN_N,
O => EXOUT);

end BEHAVE;

Differential sysIO Support
The table below summarizes the differential I/O availability in ispXPGA and ispGDX2 devices when associated with
sysHSI Blocks.

Table 7. Differential sysIO Support (When Used for sysHSI Block I/O)

sysIO Macro ispXPGA ispGDX2

LVDSIN
Yes1

YesLVDSOUT

LVDSTRI
No

LVDSIO No

BLVDSIN

No
YesBLVDSOUT

BLVDSTRI

BLVDSIO No

LVPECLIN No No

1. ispXPGA supports 2.5V only.

Lattice Semiconductor sysHSI Block Usage Guidelines

23

Table 8. Differential sysIO Support (without sysHSI Block)

sysIO Macro ispXPGA ispGDX2 ispXPLD™

LVDSIN

Yes1 Yes Yes
LVDSOUT2

LVDSTRI2

LVDSIO2

BLVDSIN

Yes1

Yes No
BLVDSOUT2

BLVDSTRI2

BVLDSIO No

LVPECLIN

Yes1 Yes1 Yes1, 4LVPECLOUT3

LVPECLTRI3

LVPECLIO No No No

1. For more information, see Lattice technical note TN1000, sysIO Usage Guidelines for Lattice Devices.
ispXPGA supports 2.5V only.

2. These outputs require external resistor pack in ispXPGA.
3. These outputs require external resistor pack for all three devices.
4. LVPECL macros are not supported in ispXPLD. Users can assign LVPECL in the Preference Editor or in

source code using the IO_TYPES attribute.

Lattice Semiconductor sysHSI Block Usage Guidelines

24

Figure 17. Differential Signal Interfacing Basic Diagram

LVDS
Receiver

1
0

0

Zo

Zo

Standard
LVDS Driver

pad

pad

pad

pad

Lattice LVDS Drivers are Current Sourcing standard LVDS drivers. This type of LVDS drivers are
available in ispXPLD, ispGDX2 (with or without SERDES) and ispXPGA (with SERDES mode only).

165

165

1
4

0

Bourns
CAT16LV-4F12

Zo

Zo

ispXPGA
LVDS Driver

(without SERDES)

1
0

0

pad

pad

LVDS
Receiver

pad

pad

In ispXPGA, when sysIOs are used as general LVDS drivers without SERDES, a resistor pack is
required as shown.

ispGDX2
BLVDS Driver

Zo

Zo

Zo

Zo

pad

pad

The BLVDS drivers in ispGDX2 are current sourcing(10mA) standard BLVDS drivers
and are available for general sysIO usage(without SERDES) or SERDES usage.

Lattice Semiconductor sysHSI Block Usage Guidelines

25

Appendix C. sysHSI Timing Diagrams
Figure 18. Serial Input Data Eye Diagram Template (Differential)

Lock-in Timing

EO SIN

VLVDT
200 mV Differential

+/- 100 mV Single Ended

JTTH

BIT TIME

JTTH : Optimum Threshold Crossing Jitter

JTTH

SIN

CDRLOCK

SYDT

RXD(0:9)

CDR_8B10B LOCK-IN TIMING

DATA (SERIAL)120 Idle Pattern(480 TRCP)

Idle Pattern DATA (PARALLEL)

T CDRLOCK

SIN

SYDT

RXD(0:9)

CDR_10B12B LOCK-IN TIMING

DATA (SERIAL)1024 SYNCPAT

SYNCPAT DATA (PARALLEL)

TRAINING SEQUENCE SS MODE DATA TRANSFER

SIN

CAL

SYDT

RXD(0:7)

CDRX_SS LOCK-IN (DE-SKEW) TIMING

DATA (SERIAL)MIN. 1200 SYNCPAT

MIN. 1100 LS CYCLE

SYNCPAT DATA (PARALLEL)

TSU SYNC

T HDSYNC

50 SYNCPAT

Lattice Semiconductor sysHSI Block Usage Guidelines

26

SYDT Timing

AC Timing Diagram at sysHSI Block Boundary

RECCLK

SYDT

RXD(0:9)

SYDT TIMING FOR CDRX_8B10B

K28.5 D21.4 D21.5 D21.5K28.5 D21.4 D21.5 D21.5

IDLE PATTERN IDLE PATTERN

D0 D1 D2

 Data

RECCLK

SYDT

RXD(0:9)

SYDT TIMING FOR CDRX_10B12B

SYNC PATTERN

Data0 Data1 Data2

Parallel Data

Data3 Data4

tHSITXDDATAS

REFCLK

TXD

T PWREFCLK

tHSITXDDATAH

RECCLK

SYDT, RXD

tHSIOUTVALIDPRE

tHSIOUTVALIDPOST

Lattice Semiconductor sysHSI Block Usage Guidelines

27

Serializer Timing

8B/10B SERIALIZER DELAY TIMING

TXD

REFCLK

SOUT

TCOSOUT

SYMBOL N SYMBOL N+1

SYMBOL NSYMBOL N-1 SYMBOL N+1

b9 b0 b1 b2b5 b6 b7 b8 b3 b4 b5b4 b1 b2b7 b8 b9 b0b6

SYMBOL N SYMBOL N+1

10B/12B SERIALIZER DELAY TIMING

TXD

REFCLK

SOUT

T COSOUT

SYMBOL NSYMBOL N-1

b9 b0 b1 b2b5 b6 b7 b8 b3 b4 b5b4 b7 b8 b9b6"0" "1" "0" "1"

SS Mode SERIALIZER DELAY TIMING

TXD

REFCLK

SOUT

SYMBOL N SYMBOL N+1

SYMBOL NSYMBOL N-1
SYMBOL

N+1

b0 b1 b2b5 b6 b7 b3 b4 b5b4 b7b6 b0

SS_CLKOUT

T COSOUT

TSKTX

TCKOSOUT

Lattice Semiconductor sysHSI Block Usage Guidelines

28

Deserializer Timing

8B/10B DESERIALIZER DELAY TIMING

RXD

RECCLK

SIN
TDSIN

SYMBOL N+1SYMBOL N

b9 b0 b1 b2b5 b6 b7 b8 b3 b4 b5b4b1 b2 b7 b8 b9b0 b6b3 b4b1 b2b0 b3

SYMBOL N+2

b5

SYMBOL N-1 SYMBOL N

10B/12B DESERIALIZER DELAY TIMING

SIN

RXD

RECCLK

T
TDSIN

SYMBOL N+1SYMBOL N

b0 b1 b2 b5b3 b4 b5 b4b7 b8 b9b6"1" "0" "1" b0 b1 b2 b3 b7 b8 b9b6 b4"0" "1" b0 b1 b2 b3

SYMBOL N-1SYMBOL N-2 SYMBOL N

SYMBOL N+2

CDRX_SS DESERIALIZER DELAY TIMING

RXD

RECCLK

SIN

T DSIN

SYMBOL N+1SYMBOL N

b1 b2 b3 b5b5 b6 b7 b0 b6 b7 b0b4b1 b2 b2 b3 b4b0 b1b3

SYMBOL N+2

b4

SYMBOL N-2 SYMBOL N-1 SYMBOL N

Lattice Semiconductor sysHSI Block Usage Guidelines

29

Appendix D. ispXPGA Family
The block diagram of ispXPGA-1200 is shown in Figure 19.

Figure 19. ispXPGA-1200 Block Diagram

sysHSI Usage in SS Mode: ispXPGA Family 125 to 1200
Table 9. sysHSI Block Usage Guide Map

Package Type

1200 500 200 125

Number of Channels in Each Group Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

9, 10

01 9

7, 8
5, 6

1 8 0 5

3, 4
1, 2 22 7 1 4 0 3 0 1

3 6 2 3 1 2

4 5

1. sysHSI Block Number (see Figure 19)
2. Only the sysHSI blocks with italic numbers generate SS_CLKOUT. They must be used in macros TX_SS_4,6,8. Other sysHSI blocks in the

table are recommended to minimize channel-to-channel skew.

P
F

U

P
F

U

P
F

U

62 PICs

62 PICs

sysIO BANK 3sysIO BANK 2

sysIO BANK 6sysIO BANK 7

sy
sI

O
 B

A
N

K
 0

62
 P

IC
s

sy
sI

O
 B

A
N

K
 1

8 Programmable sysIO banks
62 PICs per bank
2 sysHSI Groups (left and right side)
Each sysHSI group has 5 sysHSI Blocks

sy
sH

S
I B

lo
ck

 (
0,

 1
, 2

)

sy
sH

S
I B

lo
ck

 (
7,

 8
, 9

)
sy

sH
S

I B
lo

ck
 (

5,
 6

)

sy
sH

S
I B

lo
ck

 (
3,

 4
)

sy
sM

E
M

 B
lo

ck

sy
sM

E
M

 B
lo

ck
sy

sM
E

M
 B

lo
ck

sy
sM

E
M

 B
lo

ck

sy
sM

E
M

 B
lo

ck

sy
sM

E
M

 B
lo

ck

sy
sM

E
M

 B
lo

ck

sy
sM

E
M

 B
lo

ck
P

L
L

P
L

L
P

L
L

P
L

L

P
L

L
P

L
L

P
L

L
P

L
L

sy
sI

O
 B

A
N

K
 5

sy
sI

O
 B

A
N

K
 4

62
 P

IC
s

Lattice Semiconductor sysHSI Block Usage Guidelines

30

ispXPGA Clock Tree
When LVDS Clock is used, odd numbered clocks are not available.

Table 10. ispXPGA-1200 Clock Tree (LVDS Clock)

Table 11. ispXPGA-500 Clock Tree

Table 12. ispXPGA-200 Clock Tree

Table 13. ispXPGA-125 Clock Tree

sysHSI
Block<0:9> REFCLK0 REFCLK1 REFCLK2 REFCLK3

0 Clock0 Clock1 Clock2 Clock3

1 Clock0 Clock1 Clock2 Clock4

2 Clock0 Clock1 Clock2 Clock5

3 Clock0 Clock1 Clock3 Clock6

4 Clock0 Clock1 Clock3 Clock7

5 Clock0 Clock5 Clock7 Clock3

6 Clock0 Clock5 Clock7 Clock2

7 Clock0 Clock5 Clock6 Clock1

8 Clock0 Clock5 Clock6 Clock0

9 Clock0 Clock5 Clock6 Clock7

sysHSI
Block<0:5> REFCLK0 REFCLK1 REFCLK2 REFCLK3

0 Clock0 Clock1 Clock2 Clock3

1 Clock0 Clock1 Clock2 Clock4

2 Clock0 Clock1 Clock3 Clock6

3 Clock0 Clock5 Clock7 Clock2

4 Clock0 Clock5 Clock6 Clock1

5 Clock0 Clock5 Clock6 Clock7

sysHSI
Block<0:3> REFCLK0 REFCLK1 REFCLK2 REFCLK3

0 Clock0 Clock1 Clock2 Clock3

1 Clock0 Clock1 Clock2 Clock4

2 Clock0 Clock5 Clock6 Clock0

3 Clock0 Clock5 Clock6 Clock7

sysHSI
Block<0:1> REFCLK0 REFCLK1 REFCLK2 REFCLK3

0 Clock0 Clock1 Clock2 Clock3

1 Clock0 Clock5 Clock6 Clock7

Lattice Semiconductor sysHSI Block Usage Guidelines

31

sysMEM™ Embedded RAM (EBR) Usage as FIFO
The ispXPGA family includes sysMEM Embedded RAM Blocks that can be programmed as a FIFO for synchroni-
zation.

The embedded memory in the XPGA devices utilizes a bi-directional data bus. The RAM is configured as single-
port RAM (dedicated input and dedicated output ports) because only the Receiver uses a synchronizer at up to
1GHz. The core generator will support all valid single-port configurations of the RAM up to 4096 x 18.

For information on EBR macros available, refer to Lattice technical note number TN1028, ispXPGA Memory
Design and Usage Guide.

Pin Usage Constraint in ispXPGA
When a sysHSI Block is used, the whole block of 8 consecutive I/O Group is reserved for the SERDES. The pins
that belong to the block are unavailable for other general I/O usage. The reserved block information is included in
the Logic Signal Connections Table in the data sheet.

Lattice Semiconductor sysHSI Block Usage Guidelines

32

Appendix E. ispGDX2 Family
sysIO Banks and sysHSI Blocks
The ispGDX2 family devices are designed to minimize clock tree skew for high speed interface applications. The
sysHSI sub-blocks, HSI_A and HSI_B are routed to nearest sysIO Bank. This is illustrated in Figure 20.

The ispGDX2-256 has eight sysHSI Blocks. Each sysHSI Block is divided to two SERDES blocks, HSI_A and
HSI_B. Each SERDES Block occupies 16 I/O Cell Blocks in the sysIO Bank. Refer to the I/O connection table in
the ispGDX2V/B/C Family data sheet for further information.

Figure 20. ispGDX2 sysIO Bank and sysHSI Block

FIFO
sysHSI Block Interface with FIFO
The ispGDX2 Family includes dedicated FIFO for synchronization of recovered data.

The FIFO is 15 x 10 and is intended to support CDR. The usage of FIFO is optional.

B
A

A
B

B sysHSI_2 A

A B

B sysHSI_4 A

sy
sH

S
I_

5

sy
sI

/O
 B

an
k

5

sy
sI

/O
 B

an
k

2

sy
sI

/O
 B

an
k

6

sysI/O Bank 7 sysI/O Bank 0

sysI/O Bank 4 sysI/O Bank 3

sy
sI

/O
 B

an
k

1

sysHSI_6

A
B

B
A

ispGDX2-256
Core

sys
CLOCK

sys
CLOCK

sys
CLOCK

sys
CLOCK

A BsysHSI_0

sy
sH

S
I_

7

sy
sH

S
I_

1
sy

sH
S

I_
3

Lattice Semiconductor sysHSI Block Usage Guidelines

33

Figure 21. sysHSI Block interface with FIFO in ispGDX2

FIFO I/O
Figure 22 shows the I/O of FIFO.

Figure 22. FIFO I/O

The Input Register of the I/O cells are used as FIFO output registers. FIFO used the input Register clock as the
Read Clock and the Input Register Clock Enable as the Read Enable.

TXDTransmitter

Receiver

HSI

CDRRSTb

REFCLK (from Clock Tree)

SS_CLKIN

POR
RESETb

CDR/FIFO RESETb

CSLOCK
HSTCLK HSRCLK

CSPLL

GDX
Block

START READ

FIFO
15x10

RESETb
DATAOUT

RCLK

RE

FULL

EMPTY

START READ

DATAIN

WCLK

WE

RCLK

REN

FULL

EMPTY

RXD

RECCLK

SOUT

SIN

SYDT

SS_CLKOUT

FIFO_WE

sy
sI

O
 B

an
k

FIFO

RESETb
WRITE
PORT

WRCLK

WE

RESETb
CDR/FIFO RESETb

POR

RXD(0:9)

DIN(0:9)

sysHSI
MRB

gclk<0>
gclk<1>
gclk<2>
gclk<3>

RECCLK
GND
GND
GND

CK0/CE0
CK1/CE1
CK2/CE2
CK3/CE3

NC
GND
GND
GND

READ
PORT

RCLK

RE

To GDX Block

Input register clock

Input register enable

Start Read

Full

Empty
sysIO

Lattice Semiconductor sysHSI Block Usage Guidelines

34

FIFO Macro Definitions

FIFO I/O Definitions

DI Parallel Data Write Port (Data width is 4, 6, 8, 10 depend on sysHSI Macro)

DO Parallel Data Read Port (Data width is 4, 6, 8, 10 depend on sysHSI Macro)

WRCLK Write Clock. In SERDES with FIFO Mode, RECCLK is used for Write Clock

WE Write Enable

RCLK Read Clock. Same as Input Register Clock

RE Read Enable. Same as Input Register Clock Enable

START_RD Start Read Flag. Active Low. This signal is not used in FIFO Only Mode.

FULL FIFO FULL Flag

EMPTY FIFO EMPTY Flag

RST Reset. In SERDES with FIFO Mode, CDRRST is used for RST. Active High.

The RST inputs of the synthesis macro FIFO15X10A and its simulation models are ACTIVE HIGH, while the silicon
is ACTIVE LOW when used with sysHSI Block. The RST input at the pin must be inverted as shown in the example
below.

Macro Symbol Drawing
Figure 23. FIFO Macro Symbol

FIFO Instantiation in Verilog
FIFO15X10A I1(.DI0(DI0),.DI1(DI1),.DI2(DI2),.DI3(DI3),.DI4(DI4),

.DI5(DI5),.DI6(DI6),.DI7(DI7),.DI8(DI8),.DI9(DI9),

.WE(WE),.WCLK(WCLK),.RST(!RST),.RE(RE),.RCLK(RCLK),

.DO0(DO0),.DO1(DO1),.DO2(DO2),.DO3(DO3),.DO4(DO4),

.DO5(DO5),.DO6(DO6),.DO7(DO7),.DO8(DO8),.DO9(DO9),

.FULL(FULL),.EMPTY(EMPTY),.START_RD(START_RD));

DI0
DI1
DI2
DI3
DI4
DI5
DI6
DI7
DI8
DI9
WE
WCLK
RST
RE
RCLK

DO0
DO1
DO2
DO3
DO4
DO5
DO6
DO7
DO8
DO9

FULL
EMPTY

START_RD

FIFO 15 x 10A

Lattice Semiconductor sysHSI Block Usage Guidelines

35

sysHSI Block Usage in Source-Synchronous Mode: ispGDX2 Family 64 to 256
Table 14. sysHSI Block Usage Guide Map

ispGDX2 Clock Tree
Table 15. ispGDX2 Clock Tree

sysHSI I/O Cell Data Path
Figure 24 shows the path for three registers associated with the I/O cell. The signals, PLL Clock output, FIFO out-
put, sysHSI Flag (SYDT), sysHSI-received deserialized data output (RXD0..RXD9), recovered clock (RECCLK) are
routed to GRP via the input register of the I/O cell. When these signals are used, the corresponding I/O pins are
available for output only because the input paths are already occupied.”

The PLL Flag (LOCK, FIFO Flags (FULL, EMPTY), or sysHSI Flags [CSLOCK, SYDT(SERDES with FIFO)] are
routed to the I/O pin via the output MUX associated with the output register of the I/O cell. When these signals are
used and they share the I/O cells with TXD(0:9), then the whole block is not available for the Transmitter because
the output paths are already used.

Please refer to the Logical Signal Connections Table in the data sheet for details.

Package Type

256 128 64

Number of Transmitter Channels
in Each Group Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

7, 8
5, 6

3, 4
1, 2 22 4 0 2 0 1

31 5 1 3

1 7

0 6

1. sysHSI Block Number (see Figure 20).
2. Only the sysHSI blocks in italic generate SS_CLKOUT. They must be used in macros TX_SS_4, 6, 8. Other

sysHSI blocks in the table are recommended to minimize channel-to-channel skew.

sysHSI Block REFCLK0 REFCLK1 REFCLK2 REFCLK3

sysHSI Block GCLK0 GCLK1 GCLK2 GCLK3

Note: When the LVDS Clock is used, odd numbered clocks are not available.

Lattice Semiconductor sysHSI Block Usage Guidelines

36

Figure 24. ispGDX2 I/O Cell Diagram

To GRP

I/O Pad

FLAGs [(FULL, EMPTY, START_RD,
PLL_LOCK, CSLOCK, SYDT*]

To Output Register
I/O(n-1), I/O(n+1)

From 4:1 MUX Output

To Input Reg
(n-1) & (n+1)

To sysHSI
Transmitter [TXD]

From In
I/O (n-1)

From In
I/O (n+1)

From PLL OUT, FIFO OUT [DO] and
sysHSI [RXD, RECCLK, SYDT*]

OUT

REG/
LATCH

S R

CLK

CE

OE

REG/
LATCH

S R

CLK

CE

4 Global OE
Pins

4 OE PTs
from

Control Array

VCC

GND

From 4:1 MUX

From I/O (n-1)

*There are two ways of routing the SYDT signal.
 1. The recommended SYDT routing is to use the Input Mux – to – Input Register – GRP – any pin available. When
 this routing is preferred user may specify any available pin and the IO cell for this route is the one free from conflict
 with any Receiver or Transmitter signal.
 2. If SYDT is routed to the I/O Pad through the Output Mux then the whole block can not be used for transmitter because
 one of TXD data input to transmitter shares the Output Mux with the SYDT.

From I/O (n+1)

Delay

Input

REG/
LATCH

S R

CLK

CE

Lattice Semiconductor sysHSI Block Usage Guidelines

37

The CDRRST inputs of the synthesis macro CDRX_10B12B, CDRX_8B10B and their simulation models are
ACTIVE HIGH, while the silicon is ACTIVE LOW. The CDRRST signal at the pin must be inverted as shown in the
examples below.

CDRX_10B12B Instantiation in Verilog
CDRX_10B12B I1(.SIN(SIN),.REFCLK(REFCLK),.CDRRST(!CDRRST),.RXD0(RXD0),

.RXD1(RXD1),.RXD2(RXD2),.RXD3(RXD3),.RXD4(RXD4),.RXD5(RXD5),

.RXD6(RXD6),.RXD7(RXD7),.RXD8(RXD8),.RXD9(RXD9),.RECCLK(RECCLK),

.CSLOCK(CSLOCK),.SYDT(SYDT));

CDRX_8B10B Instantiation in Verilog
CDRX_8B10B I1(.SIN(SIN),.REFCLK(RECLK),.CDRRST(!CDRRST),.RXD0

(RXD0),.RXD1(RXD1),.RXD2(RXD2),.RXD3(RXD3),.RXD4(RXD4),.RXD5(RXD5),
.RXD6(RXD6),.RXD7(RXD7),.RXD8(RXD8),.RXD9(RXD9),.RECCLK(RECCLK),
.CSLOCK(CSLOCK),.SYDT(SYDT));

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

	Introduction
	Modes of Operation
	CDR Modes
	Source-Synchronous (SS) Modes

	sysHSI Block
	CSPLL: Clock Synthesizer PLL
	Clock and Data Recovery
	Serializer/De-Serializer (SER/DES)
	Synchronizer
	High Speed Loop Back Mode
	sysHSI Block and Source-Synchronous Mode with Multiple Data Channels

	Using sysHSI Blocks in Design Tools
	Introduction to Macros
	sysHSI Block and CSPLL I/O Description
	User Parameters
	Macros Symbols of sysHSI Block
	sysIO Usage with sysHSI Block
	sysIO LVDS and BLVDS IO_TYPES Usage with HDLs

	Appendix A. sysHSI Usage with HDLs
	Including sysHSI in a Design
	sysHSI Usage in Module/IP Manager
	Customizing the Module
	Clicking ‘Generate” creates a VHDL (module name .vhd) or Verilog (module name.v) file in the work...
	Direct Instantiation Into Source Code
	Source Code Examples Generated by Module/IP Manager
	CDRX_8B10B (Verilog)
	CDRX_10B12B (VHDL)
	Functional Simulation in Modelsim
	Coding Tips for sysHSI Usage in HDLs

	Appendix B. sysIO LVDS and BLVDS Usage with HDLs
	Attributes
	Instantiation
	Differential sysIO Support

	Appendix C. sysHSI Timing Diagrams
	Lock-in Timing
	SYDT Timing
	AC Timing Diagram at sysHSI Block Boundary
	Serializer Timing
	Deserializer Timing

	Appendix D. ispXPGA Family
	sysHSI Usage in SS Mode: ispXPGA Family 125 to 1200
	ispXPGA Clock Tree
	sysMEM™ Embedded RAM (EBR) Usage as FIFO
	Pin Usage Constraint in ispXPGA

	Appendix E. ispGDX2 Family
	sysIO Banks and sysHSI Blocks
	FIFO
	sysHSI Block Usage in Source-Synchronous Mode: ispGDX2 Family 64 to 256
	ispGDX2 Clock Tree
	sysHSI I/O Cell Data Path
	CDRX_10B12B Instantiation in Verilog
	CDRX_8B10B Instantiation in Verilog

	Technical Support Assistance

