

www.latticesemi.com

1

tn1003_07

sysCLOCK

PLL Usage Guide for
ispXPGA,

ispGDX2,

ispXPLD

and
ispMACH

5000VG Devices

September 2004 Technical Note TN1003

™

™

™™®

Introduction

As programmable logic devices (PLDs) grow in size and complexity, on-chip clock distribution becomes a major
factor in performance. The delay and skew of the clocks significantly affect the performance of the device. Further-
more, distribution of these clock signals to other devices on the board increases the complexity of the design. To
compensate for these effects, many of the Lattice devices include phase locked loops (PLLs) referred to as
sysCLOCK PLLs (Table 1).

Lattice’s sysCLOCK PLLs can be used to align the clock tree, distribute multiple clock frequencies, perform duty
cycle correction, and provide phase shift. As with most traditional PLLs, the internal PLLs compare the input clock
and output clock and compensate for the offset by adjusting the output frequency and phase through a voltage con-
trolled oscillator (VCO) and phase detector (Figure 1).

Figure 1. Phase-Locked Loop Block Diagram

The sysCLOCK PLL includes dividers on the input, output, and feedback lines, which allow the PLL to synthesize
various output clock frequencies. In addition to the dividers, there are delay elements on the input and feedback
lines which shift the internal clock to allow the optimization of set-up and clock-to-out times. The PLLs also perform
duty cycle correction, which results in a stable 50/50-output duty cycle for various input duty cycles.

These features give designers the flexibility of creating a variety of clock signals within the PLD. This simplifies
board design and reduces cost, because designers no longer need external circuitry to create these clocks. The
PLL can further simplify the design by using the external feedback pin to align the clock at the board level.

Table 1. Lattice Device Families with sysCLOCK

Device Family sysCLOCK PLLs
Input Frequency

Range (MHz)
Output Frequency

Range (MHz) Delay Step

ispMACH 5000VG 2 5 - 180 5 - 180 500 ps

ispXPLD 5000MX 2 10 - 320 10 - 320 250 ps

ispXPGA 8 10 - 320 10 - 320 250 ps

ispGDX2 Up to 4 10 - 320 10 - 320 333 ps

Note: Refer to the device data sheets for additional specifications.

Voltage
Controlled
Oscillator

Phase
Detector

Clock Input
(Reference Clock)

Feedback

Clock Output Clock
Distribution

Network

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

2

PLLs vs. DLLs

Today, two forms of clock synthesis and control (PLLs and DLLs) are embedded in CPLDs and FPGAs. Phase
locked loops (PLLs) are the oldest and most widely used form. Delay locked loops (DLLs) are newer, but use the
same basic concepts. Each has its own advantages and disadvantages.

PLLs are based on analog circuitry containing a voltage-controlled oscillator and a phase detector (Figure 1). The
phase detector references the input clock and feedback signal to determine the relationship between the two and
instructs the oscillator to either speed up or slow down the clock signal in order to make the input and feedback
match.

DLLs are based on digital circuitry containing a delay element and phase comparator (Figure 2). The input clock
and a signal from the phase comparator are both fed to the delay element, which introduces delay between the
input clock and the feedback until they are in phase. The phase comparator uses the feedback signal from the DLL
output and the clock input to determine the relationship and send a control signal to the delay element.

While DLLs tend to migrate between process technologies more easily due to their digital nature, they are some-
what limited in their functionality. PLLs, however, can provide much more flexible clock multiplication, division, con-
trol, and delay functionality.

Figure 2. Delay Locked Loop Block Diagram

sysCLOCK PLL

The sysCLOCK PLL receives its clock inputs from the global clock pins of the device and provides outputs to the
global clock nets. Additionally, each PLL has a set of

PLL_RST

,

PLL_FBK

, and

PLL_LOCK

 signals used for exter-
nal control. Figure 3 shows the sysCLOCK PLL block diagram.

Variable Delay
Line

Control
Clock Input

(Reference Clock)
Feedback

Clock Output Clock
Distribution

Network

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

3

Figure 3. sysCLOCK PLL Block Diagram

Input Clock (M) Divider

The Input Clock (M) Divider is used to control the input clock frequency into the PLL block. It can be set to an inte-
ger value of 1 to 32. The divider setting directly corresponds to the divisor of the output clock. The input and output
of the Input Divider must be within the input and output frequency ranges specified in the device data sheet. There-
fore, the value of the Input Divider significantly affects the input clock frequency range.

Feedback Loop (N) Divider

The Feedback Loop (N) Divider is used to divide the feedback signal. Effectively, this multiplies the output clock,
because the divided feedback must speed up to match the input frequency into the PLL block. The PLL block
increases the output frequency until the divided feedback frequency equals the input frequency. Like the input
divider, the feedback loop divider can be set to an integer value of 1 to 32. The input and output of the Feedback
Divider must be within the input and output frequency ranges specified in the device data sheet. Therefore, the
value of the Feedback Divider significantly affects the input and output clock frequency range.

Variable Delay Block

The PLL can insert or remove delay from

CLK_OUT

 by inserting delay on the input or feedback lines. This effec-
tively gives the PLL phase shift capabilities. See the device data sheet for the delay range and delay increments.

VCO and Phase Detector Block

The operation of the VCO and Phase Detector block is the same as the basic PLL block described previously. It
synchronizes the input clock and feedback signals and performs duty cycle correction. When there is an input clock
(

CLK_IN

) signal the VCO and Phase Detector will oscillate to produce the correct output clock. When there is no
initial signal on

CLK_IN

, the VCO and Phase Detector will not start oscillating. When the

CLK_IN

 signal is held
high, held low, disconnected or falls below the minimum input frequency the VCO and Phase Detector will stop
oscillating after a finite amount of time, which reduces power consumption. The input and output signals of the PLL
block must be within the frequency ranges specified in the device data sheet.

Post-Scalar (V) Divider

The Post-scalar (V) Divider compensates for the frequency range of the voltage-controlled oscillator output
(FVCO). This allows the input and output clocks to run at lower frequencies without compromising the stability of
the PLL. It can be set to values of 1, 2, 4, 8, 16 or 32.

Secondary Clock (K) Divider

The Secondary Clock (K) Divider feeds the global clock net. It divides the

CLK_OUT

 signal of the PLL by the value
of the divider. It can be set to values of 2, 4, 8, 16 or 32. By design, a setting of 1 is not available as this would result
in an unnecessary duplication of the clocks.

M
Divider

N
Divider

K
Divider

CLK_IN

PLL_FBK

CLK_OUT

V
Divider

Lock
Detect

PLL_LOCK

PLL_RST PLL
Delay

PFD
&

VCO

(From Neighbor
PLL SEC_OUT)

(To Neighbor
PLL K Divider)

Route (Additional Delay)

SEC_OUT

Clock Tree

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

4

CLK_IN Input

The global clock pins provide the

CLK_IN

 signal for the sysCLOCK PLLs. The

CLK_IN

 signal is the reference clock
for the PLL.

CLK_IN

 must conform to the specifications in the data sheet in order for the PLL to operate correctly.

PLL_RST Input

The

PLL_RST

 signal resets the timing of

CLK_IN

 (M) Divider Output referenced to

CLK_IN

 as shown in Figure 4.
The

PLL_RST

 signal is not required, and if not used will be set to logic 0. The

PLL_RST

 pin is a dual-purpose pin
that can be configured as

PLL_RST

 or a regular I/O signal. This signal is used to reference the starting point of the
PLL (the first edge of the input clock). The PLL_RST signal is active high.

The

PLL_RST

 signal must be asserted for the minimum reset pulse width and de-asserted within the reset recov-
ery time before the clock, as defined in the device data sheet. The

PLL_RST

 pin is most commonly used when mul-
tiple sysCLOCK PLLs are dividing the same input clock and a reset signal is needed to synchronize the PLLs
(Figure 4).

Figure 4. PLL_RST Timing Diagram (Example M=4)

PLL_FBK Input

The feedback signal to the PLL, which is fed through the feedback divider can be derived from the global clock net
or the

PLL_FBK

 pin. Feedback must be supplied in order for the PLL to synchronize the input and output clocks.
The

PLL_FBK

 pin is a dual-purpose pin that can be configured as either

PLL_FBK

 or a regular I/O signal. The
external feedback allows the designer to compensate for board-level clock alignment. Figure 5 is an example of a
possible configuration of the sysCLOCK PLL using the external

PLL_FBK

 pin.

Figure 5. PLL_FBK Configuration

t
RSTSU

(M+1) cycle

PLL_RST

For M=2...31

M Divider Output

CLK_IN

M Divider output before reset

For M = 1
M Divider Output

For M = 32

M Divider Output

1 cycle

Clock
Distribution
Network

Clock Input GCLK

PLL_FBK

CLK_OUT Clock Output

Feedback

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

5

CLK_OUT Output

The sysCLOCK PLL primary clock output,

CLK_OUT

, drives its associated clock net. Depending on the device,

CLK_OUT

 can also drive either routing or a dedicated dual-purpose pin. For those devices using dual-purpose
pins, they are configurable as either CLK_OUT pins or regular I/O pins, and the

CLK_OUT

 signal is directly con-
nected to its associated CLK_OUT pin.

SEC_OUT Output

The secondary clock output, SEC_OUT, drives its neighbor, PLL clock net. The neighbor PLL is defined in the data
sheet.

When SEC_OUT is used, the neighbor PLL is not available as a PLL.

PLL_LOCK Output

The

PLL_LOCK

 output provides information about the status of the PLL. After the device is powered up and the
input clock is valid the PLL will achieve lock within the specified lock time (t

LOCK

). Once lock is achieved the PLL
lock signal will be asserted. If during operation the input clock or feedback signals to the PLL become invalid the
PLL will lose lock. It takes time from the occurrence of the invalid signals until the

PLL_LOCK

 signal is de-asserted.
Refer to the appendices for device-specific information.

In ispGDX2 devices,

PLL_LOCK

 is routed to a dedicated pin.

Design Tips

1. Care must be taken not to violate the input jitter specification.
2. The input clock frequency must not exceed the specification detailed in the device data sheet. The divider

settings will effect the input and output frequency range of the PLL.
3. For the software to generate the best possible results, an input clock frequency should always be speci-

fied.
4. The divider settings cannot produce frequencies outside the range specified in the device data sheet.
5. The lowest common denominator should be used for multiply and divide values to maximize the input fre-

quency range.
6. The external

PLL_FBK

 signal should be generated from the

CLK_OUT

 signal.
7. If the

PLL_LOCK

 signal is used as a clock enable, it should be synchronized before being used by the reg-
istered logic. The synchronization ensures that setup and hold times are not violated when

PLL_LOCK

 is
asserted. Figure 6 shows a common example.

8. When the PLL is not used, the V

CCP

 and GNDP pins should be electrically connected to V

CC

 and GND,
respectively.

9. When the global clock pins are not used, they should be treated as no connects.
10. When using the external

CLK_OUT

 pin to output the PLL primary output clock, the number of I/Os switch-
ing in the same bank as the

CLK_OUT

 pin significantly affects the amount of jitter on this pin. Care should
be taken to reduce the number of switching I/Os in the bank to reduce the jitter on the

CLK_OUT

 pin.

Figure 6. PLL_LOCK Common Usage Example

D Q

D Q

CE

Logic

Clock Enable

PLL_LOCK

CLK_OUT

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

6

PLL Attributes

The PLL utilizes several attributes that allow the configuration of the PLL through source constraints. The following
section details these attributes and their usage. Appendix A lists the attributes and the macros that utilize them.

IN_FREQ

The input frequency can be any value within the specified frequency range based on the divider settings. If the
divider settings are invalid, the software will generate and error. To determine if your divider settings are valid, use
the equations in Appendix B.

MULT, DIV, POST and SECDIV

The M, N, V and K dividers correspond directly to the DIV, MULT, POST, and SECDIV values respectively. The user
is not allowed to input an invalid combination; determined by the input frequency, the dividers, and the PLL specifi-
cations.

PLL_DLY

The “PLL_DLY” attribute is used to pass the Delay factor associated with the Output Clock of the PLL. This allows
the user to advance or retard the Output Clock by the value passed multiplied by PLL Delay Increment specified in
the data sheet as t

PLL_DELAY.

CLK_OUT_TO_PIN

The “CLK_OUT_TO_PIN” attribute is used to configure the CLK_OUT pin as the PLL Output Clock or as a regular
I/O pin. This attribute allows the designer the ability to route the global clock net associated with the PLL to the
CLK_OUT pin for observation or distribution on the board.

WAKE_ON_LOCK

The WAKE_ON_LOCK cell determines if the device will wait for the PLL to lock before beginning the wake-up pro-
cess. If the attribute is set to “ON”, the device will not wake up until the PLL_LOCK signal for the given PLL is
active. If is set to “OFF”, the device will wake up regardless of the state of the PLL_LOCK signal.

PLL_FBK_ATTRIBUTE

This attribute is designed for ispXPGA only. Default is CLKTREE (even when user do not add this attribute in HDL).

The ROUTE attribute allows users to add additional delay to the PLL_FBK.

Software Usage

The PLL is not an inherent part of most digital design tools. With the addition of PLLs to PLDs, there must be provi-
sions made to fully utilize the PLL. These provisions include VHDL, Verilog and ABEL components, and user con-
straints in the place and route tools. The following sections describe how to utilize the PLL in the Lattice design
tools.

Macro Definitions

The Lattice libraries contain components to allow designers to utilize the PLL. Each component has several
attributes associated with it for configuring the PLL. Appendix A lists these attributes, their meaning and the sym-
bols associated with the attribute.

Figure 7 shows the library symbol for a simple PLL (SPLL). This component is used to produce a zero delay/skew
clock using the PLL. It is the PLL with all the dividers set to one, the feedback generated internally, and the reset
disabled.

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

7

Figure 7. Simple PLL Component

Figure 8 shows the library symbol for the Standard PLL (STDPLL). This macro has the PLL_LOCK output and
attributes for setting the multiply, divide, and post-scalar divider factors for the PLL and the programmable delay.

Figure 8. Standard PLL Component

Figure 9 shows the library symbol Extended PLL (STDPLLX). This symbol gives full access to all features of the
PLL including external reset and feedback.

Figure 9. Extended PLL Component

CLK_IN CLK_OUT

SPLL

CLK_IN CLK_OUT

STDPLL

PLL_LOCK

CLK_IN CLK_OUT

STDPLLX

SEC_OUT
PLL_LOCK

PLL_FBK
PLL_RST

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

8

PLL Usage in Module/IP Manager and HDL

Including sysCLOCK PLLs in a Design

The sysCLOCK PLL capability can be accessed either through the Module/IP Manager or directly instantiated in a
design’s source code. The following sections describe both classes of usage.

Module/IP Manager Usage

The sysCLOCK PLL in ispXPGA, ispGDX2 and ispXPLD use identical architecture and is fully supported in Mod-
ule/IP Manager in the Lattice ispLEVER

®

 software. The Module/IP Manager allows the user to define the desired
PLL using a simple, easy-to-use GUI. Following definition, a VHDL or Verilog module that instantiates the desired
PLL is created. This module can be included directly in the user’s design.

Figure 10 shows the main window when PLL is selected. The only entry required in this window is the module
name. After entering a module name, click “Customize” to open the “Customizing” window, as shown in Figure 11.

Figure 10. Module/ IP Manager Main Window

In the Main window, when sysClock/PLL is selected, the user only needs to enter the Module Name. Other entries
are already set when the project is created. The user can enter different Design Entry, Device and Project Path
parameters if desired.

Normal Mode Window

The next window starts with the default mode called ‘Normal Mode’. In this mode, the user sets the input and output
frequency and the GUI will calculate the divider settings.

This Window provides the ability to define the following:

• Macro type
• Signal name
• Mode of configuration
• CLK_OUT_TO_PIN option
• WAKE_ON_LOCK option
• PLL_FBK_ATTRIBUTE option for XPGA
• Input frequency and output frequency

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

9

• Calculate the divider settings for the user

Figure 11. Normal Mode Window

Advanced Mode Window

The window will change slightly when ‘Advanced Mode’ is selected. In this mode, the user sets input and divider
settings. The GUI will calculate output frequency automatically for the user.

The Customizing Window provides the ability to define the following:

• Macro type
• Signal name
• Mode of configuration
• CLK_OUT_TO_PIN option
• WAKE_ON_LOCK option
• PLL_FBK_ATTRIBUTE option for XPGA
• Input frequency and divider settings
• Calculate output frequency for the user

Clicking ‘Generate’ creates a VHDL (module name.vhd and module name_sim.vhd) or Verilog (module name.v,
module name.lpc, module name_sim.v and module nameheader.v) file in the working directory that instantiates the
core. The load parameters button can be used to reload configurations from previously created parameter files
(*.lpc files).

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

10

Figure 12. Advanced Mode Window

Direct Instantiation Into Source Code

If desired, the Module/IP Manager can be bypassed and the sysCLOCK PLL can be instantiated directly in the
source code. Appendix A provides examples of source code generated by the Module/IP Manager. These exam-
ples can be used as templates for directly instantiating the sysCLOCK PLL in the source code.

PLL Usage in the ispLEVER Constraint Editor

The ispLEVER Constraint Editor includes a PLL Attribute Sheet. This sheet gives the user the ability to view the
settings of the sysCLOCK PLL instantiation. Table 2 is an illustration of the PLL Attribute Sheet.

Table 2. PLL Attributes Sheet

Settings can be fine-tuned without changing the design source by using the PLL Attributes Settings window.

PLL Attributes Window

The ispLEVER Constraint Editor also includes a PLL Attributes Window. This window includes two sections (Fre-
quency and Existing PLL Attributes). At the top of the window there is a grayed text box displaying the PLL type, a
check box for setting the CLK_OUT_TO_PIN attribute, and a dial box for setting the PLL_DLY attribute. Figure 13
illustrates the PLL Attributes Window.

PLL Type Input Clock Input Frequency Output Clock Secondary Clock CLK_OUT_TO_PIN WAKE_ON_LOCK Multiply Divide SecDiv PLL_RST PLL_FBK PLL_LOCK PLL_DLY PLL_FBK_Attribute

STDPLLX CLK_INT 100.0000 PPCLK SPCLK OFF OFF 2 2 2 PLLRST -7 CLKTREE

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

11

Figure 13. PLL Attributes Window

The “Frequency” section has text boxes to modify the input frequency and output frequency, grayed text boxes dis-
playing the input clock, output clock, divider settings, and secondary output clock. There is a grayed drop-down box
that allows the user to select a Secondary Output Frequency. One of the 5 possible frequencies, given the current
output frequency (access to the K-Divider without actually setting the K-Divider). When a Secondary Output Fre-
quency is selected from the drop-down box, the K-Divider setting will change to the setting that corresponds to that
frequency. There are two buttons labeled “Calculate Divider Settings” and “Advanced”. The “Calculate Divider Set-
tings” button updates the M, N, and V divider settings and Secondary Output Frequency when the input or output
frequencies are modified. If an output frequency is entered that can not be achieved, a warning message displays
the closest obtainable output frequency. The “Advanced…” button opens the “Advanced PLL Frequency Settings”
window.

The “Existing PLL Attributes List” section has a window displaying the current PLL attributes from the PLL
Attributes Sheet. When a PLL is selected in this window and the “Modify” button is selected, that PLL becomes
available for modification and all of its settings are displayed.

The “Advanced PLL Frequency Settings” window has the same appearance as the “Frequency” section of the PLL
Attributes window. However, the Output Frequency is grayed out and the Divider settings are displayed in the mid-
dle of the window. This window allows the user to update the divider settings and calculate the resulting output fre-
quency. Figure 14 illustrates the Advanced PLL Frequency Settings Window.

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

12

Figure 14. Advanced PLL Frequency Settings Window

The Constraint Editor determines the input and output frequencies based on the selected divider settings. If the
input frequency given in the design source is out of range, the Constraint Editor will flag the problem and report the
possible input frequency range based on the divider settings.

Furthermore, the

CLK_OUT_TO_PIN

 attribute can be set from within the Constraint Editor. This allows the
designer to route the PLL output to the

CLK_OUT

 pin for evaluation without changing the design source.

Input Frequency

The input frequency can be any value within the specified frequency range based on the divider settings. If the
divider settings are invalid, the Constraint Editor will generate and error. To determine if your divider settings are
valid, use the equations in Appendix B.

Divider Configuration

The M, N, V and K dividers correspond directly to the DIV, MULT, POST, and SECDIV values in the Constraint Edi-
tor, respectively. The user is not allowed to input an invalid combination; determined by the input frequency, the
dividers, and the PLL specifications.

PLL_RST

The PLL_RST cell automatically displays the pin or node name from the source file that is connected to the reset
line. If there is no reset defined, the PLL_RST cell will be empty and the PLL will only reset on power-up.

PLL_FBK

The PLL_FBK cell automatically displays the pin or node name from the source file that is connected to the feed-
back line. If there is no feedback defined, the PLL_FBK cell will be empty and the PLL will use the internal feedback
in the device.

PLL_LOCK

The PLL_LOCK cell automatically displays the pin or node name from the source file that is connected to the lock
line. If a lock signal is not defined in the source file, the PLL_LOCK cell will be empty and the lock signal will not be
available.

CLK_OUT_TO_PIN

The CLK_OUT_TO_PIN cell displays the state of the CLK_OUT signal being routed to the dedicated CLK_OUT
pin. If it is routed to the pin, the cell will display “ON”. If it is not routed out to the pin, the cell will display “OFF”. By
default, the CLK_OUT_TO_PIN attribute is “OFF”. However, if the design source declares the CLK_OUT signal as
an output, the CLK_OUT_TO_PIN attribute will be ignored and the CLK_OUT signal will be routed to the
CLK_OUT pin.

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

13

WAKE_ON_LOCK

The WAKE_ON_LOCK cell determines

if the device will wait for the PLL to lock before beginning the wake-up process.

 If
the cell displays “ON”, the device will not wake up until the PLL_LOCK signal for the given PLL is active. If the cell
displays “OFF”, the device will wake up regardless of the state of the PLL_LOCK signal.

PLL_DLY

The PLL_DLY value defaults to an empty cell, resulting in zero delay inserted. The cell sets the number of delay
increment steps. The delay increment value is specified in the device data sheet as t

PLL_DELAY.

 Modifying the value
in the PLL delay cell advances or delays the CLK_OUT signal by the set value multiplied by the delay increment.
Negative values specify advancement, and positive values add delay.

Timing Analysis and Simulation with PLLs

The use of the sysCLOCK PLL feature in Lattice devices significantly affects the timing of the device. The following
cases outline the timing analysis and simulation implications of many common uses of the sysCLOCK PLLs. In all
cases, the divider settings and delay settings of the PLL are included in the simulation of the device. The simulation
does not compensate for external delays and dividers in the feedback loop. Furthermore, the

PLL_LOCK

 signal is
not simulated according to the t

LOCK

 specification. The

PLL_LOCK

 signal will appear active shortly after the simu-
lation begins, but will remain active throughout the simulation.

Case 1. Internal Clock Net Internal Feedback
When the registers of the design are driven by the output clock of the PLL (CLK_OUT) and the PLL_FBK signal is
generated internally, the Lattice design tools automatically adjust the delay associated with the clock net and the
resulting simulation mimics the device behavior.

Case 2. External Clock Internal Feedback
When the PLL drives a clock signal off chip but derives its feedback internally, the timing of the clock output signal
(CLK_OUT) at the device pin relative to the input clock (GCLK) at the device pin is defined by the tCLK_OUT_DLY
specification in the data sheet. The Lattice design tools automatically compensate for this delay and the simulation
of the output clock will reflect the correct timing.

Case 3. External Clock External Feedback
When the PLL uses external feedback and the PLL drives the clock signal off chip, the input clock to external feed-
back delta (tφ) specification defines the delay between the input clock and the feedback. This delay is not reflected
in the timing simulation. The timing tool always assumes local feedback and it simulates a clock delay of
tCLK_OUT_DLY. To compensate for any delay in the feedback, the input clock must be advanced by the same amount
as the delay in the feedback plus the inherent delay of the input clock and feedback pins (tφ) (Equation 6).

(6)

Where tADV_INPUT is the amount to advance the input clock and tFBK_DLY is the amount of delay in the feedback
line. The tCLK_OUT_DLY parameter should only be used when the feedback is generated by the CLK_OUT pin.

Case 4. Internal Clock Net External Feedback
When the PLL provides the clock for internal registers and uses external feedback, the Lattice design tools do not
adjust the simulation models to account for the delay in the feedback. To compensate for any delay in the feedback,
the input clock must be advanced by the same amount as the delay in the feedback (See Equation 6).

Case 5. Secondary Clock Timing Internal Feedback
When the PLL drives internal resisters via the secondary clock divider and uses internal feedback, the Lattice
design tools adjust the delay associated with the clock net through the use of the internal adder tPLL_SEC_DELAY.

= + +tADV_INPUT tFBK_DLY tCLK_OUT_DLYtφ

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

14

Thus the design tools provide the correct timing simulations for the registers connected to the corresponding clock
net.

Case 6. Secondary Clock Timing External Feedback
When the PLL drives internal resisters via the secondary clock divider and uses external feedback, the Lattice
design tools do not adjust the simulation models to account the delay in the feedback. To compensate for any delay
in the feedback, the input clock must be advanced by the same amount as the delay in the feedback (See Equation
6).

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

15

Appendix A. PLL Attributes

M, N and V Setting Limitations
All combinations of M, N and V values are allowed as long as the frequency is within the specified range. Excep-
tion: the combination of M=1, N=1 and V=1 is not a valid combination for ispXPGA, ispGDX2 and ispXPLD. The V
divider must be set to produce the highest possible fVDIVIN for optimum PLL performance.

Attribute Name Value Default Description

Components Applied

SPLL STDPLL STDPLLX

IN_FREQ Real None Sets input clock frequency1 X X X

MULT Integer 2 N divider setting: 1 to 32 X X

DIV Integer 2 M divider setting: 1 to 32 X X

POST Integer 1 V divider setting: 1,2,4,8,16, 32 X X

SECDIV Integer None K divider setting: 2,4,8,16,32 X

PLL_DLY Integer 0 Delay Factor: -7,-6,..0..6,7 X X

CLK_OUT_TO_PIN ON, OFF OFF Sets PLL output clock to CLK_OUT pin X X X

WAKE_ON_LOCK ON, OFF OFF Determines if the device will wait for the
PLL to lock before beginning the wake-
up process

X X X

PLL_FBK_ATTRIBUTE2 CLKTEE,
ROUTE

CLKTREE Add additional delay to the feedback X

1. Down to 4-bit resolution after decimal point in MHz.
2. For ispXPGA only.

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

16

Appendix B. PLL Frequency Limit Equations
The divider values are specified as M, N, V, and K, which correspond to the DIV, MULT, POST, and SECDIV set-
tings, respectively.

These values for fIN, fOUT, and fVDIVIN are the absolute frequency ranges for the sysCLOCK PLL. The values for fIN-

MIN, fINMAX, fOUTMIN, and fOUTMAX are the calculated frequency ranges based on the divider settings. These calcu-
lated frequency ranges become the limits for the specific divider settings used in the design. An error will be
generated if fIN or fOUT violate these calculated frequency ranges.

Equations for Generating Input and Output Frequency Ranges
ispMACH 5000VG

fINMIN = (fVDIVIDINMIN /(V*N))*M, if below 5*M round up to 5*M

fINMAX = (fVDIVIDINMAX /(V*N))*M, if above 180 round down to 180

fOUTMIN = fINMIN*(N/M), if below 5*N round up to 5*N

fOUTMAX = fINMAX*(N/M), if above 180 round down to 180

fVDIVIN = fOUT * V

If fINMIN > fINMAX, the divider settings are invalid. If fINMIN is above 180MHz or fINMAX is below 5MHz, the divider val-
ues are invalid.

ispXPGA, ispGDX2, ispXPLD

fINMIN = (fVDIVIDINMIN /(V*N))*M, if below 10*M round up to 10*M

fINMAX = (fVDIVIDINMAX /(V*N))*M, if above 320 round down to 320

fOUTMIN = fINMIN*(N/M), if below 10*N round up to 10*N

fOUTMAX = fINMAX*(N/M), if above 320 round down to 320

fVDIVIN = fOUT * V

If fINMIN > fINMAX, the divider settings are invalid. If fINMIN is above 320MHz or fINMAX is below 10MHz, the divider
values are invalid.

Min. (MHz) Max. (MHz)

fIN 5 180

fOUT 5 180

fVDIVIDIN 60 200

Min. (MHz) Max. (MHz)

fIN 10 320

fOUT 10 320

fVDIVIDIN 100 400

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

17

Appendix C. PLL_LOCK Behavior
The PLL_LOCK signal in the ispMACH™ 5000VG does not indicate an “out-of-lock” condition immediately after the
PLL looses lock given certain conditions. This also implies that the PLL_LOCK signal does not indicate when a
clock cycle is missing from the input clock under these conditions. Table 3 describes the behavior of the
PLL_LOCK signal in the ispMACH 5000VG devices.

Table 3. ispMACH 5000VG PLL_LOCK Behavior

CLK_IN PLL_RST
Previous State of

PLL_LOCK Next State of PLL_LOCK

Normal Operation 0 0 1 after tLOCK

Normal Operation 0 1 1

Normal Operation 1 0 0

Normal Operation 1 1 0 after 5µs

Stuck High 0 0 0

Stuck High 0 1 0 after 5µs

Stuck High 1 0 0

Stuck High 1 1 0 after 5µs

Stuck Low 0 0 0

Stuck Low 0 1 1

Stuck Low 1 0 0

Stuck Low 1 1 0 after 5µs

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

18

Appendix D. Source Code Examples Generated by Module/IP Manager
STDPLLX Module (Verilog)
Header File for Verilog

module STDPLLX(CLK_IN, PLL_FBK, PLL_RST, PLL_LOCK, SEC_OUT, CLK_OUT);

parameter in_freq = "1";
parameter mult = "1";
parameter div = "1";
parameter post = "1";
parameter pll_dly = "1";
parameter secdiv = "1";
parameter clk_out_to_pin = "ON";
parameter wake_on_lock = "OFF";

input CLK_IN;
input PLL_FBK;
input PLL_RST;
output CLK_OUT;
output PLL_LOCK;
output SEC_OUT;

endmodule

//This design can be synthesized by Synplify and LeonardoSpectrum.
//It contains attributes for both synthesis tools.

module xt(clk_in, pll_fbk, pll_rst, clk_out, sec_out, pll_lock);

input clk_in;
input pll_fbk;
input pll_rst;
output clk_out;
output pll_lock;
output sec_out;

defparam I1.in_freq = "100.0000",
I1.mult = "8",
I1.div = "5",
I1.post = "2",
I1.pll_dly = "0",
I1.secdiv = "2",
I1.clk_out_to_pin = "OFF",
I1.wake_on_lock = "OFF";

STDPLLX I1 (.CLK_IN(clk_in), .PLL_FBK(pll_fbk), .PLL_RST(pll_rst),
.CLK_OUT(clk_out), .PLL_LOCK(pll_lock), .SEC_OUT(sec_out));

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

19

// exemplar attribute I1 in_freq 100.0000
// exemplar attribute I1 mult 8
// exemplar attribute I1 div 5
// exemplar attribute I1 post 2
// exemplar attribute I1 pll_dly 0
// exemplar attribute I1 secdiv 2
// exemplar attribute I1 clk_out_to_pin OFF
// exemplar attribute I1 wake_on_lock OFF

endmodule

STDPLLX Module (VHDL)

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
library lattice;
use lattice.components.all;

entity txx is
port (clk_in : in std_logic;

pll_fbk : in std_logic;
pll_rst : in std_logic;
clk_out : out std_logic;
sec_out : out std_logic;
pll_lock : out std_logic);

end txx;

architecture behave of txx is
component STDPLLX

generic(in_freq : string;
clk_out_to_pin : string;
wake_on_lock : string;
mult : string;
div : string;
post : string;
pll_dly : string;
secdiv : string);

port(CLK_IN: in std_logic;
PLL_FBK: in std_logic;
PLL_RST: in std_logic;
CLK_OUT: out std_logic;
PLL_LOCK: out std_logic;
SEC_OUT: out std_logic);

end component;

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

20

attribute in_freq : string;
attribute mult : string;
attribute div : string;
attribute post : string;
attribute pll_dly : string;
attribute secdiv : string;
attribute clk_out_to_pin : string;
attribute wake_on_lock : string;
attribute in_freq of I1 : label is "100.0000";
attribute mult of I1 : label is "8";
attribute div of I1 : label is "5";
attribute post of I1 : label is "2";
attribute pll_dly of I1 : label is "0";
attribute secdiv of I1 : label is "2";
attribute clk_out_to_pin of I1 : label is "OFF";
attribute wake_on_lock of I1 : label is "OFF";

begin
I1: STDPLLX
generic map(

in_freq => "100.0000",
mult => "8",
div => "5",
post => "2",
pll_dly => "0",
secdiv => "2",
clk_out_to_pin => "OFF",
wake_on_lock => "OFF")

port map(CLK_IN => clk_in,
PLL_FBK => pll_fbk,
PLL_RST => pll_rst,
CLK_OUT => clk_out,
PLL_LOCK => pll_lock,
SEC_OUT => sec_out);

end behave;

ABEL
Library Instantiation
library 'lattice';

Simple PLL Declaration
LAT_SPLL(clk_in,in_freq,clock_out_to_pin,wake_on_lock);

Standard PLL Declaration
LAT_STDPLL(clk_in,in_freq,clk_out_to_pin,wake_on_lock,mult,div,post,pll_dly);

Extended PLL Declaration
LAT_STDPLLX(clk_in,in_freq,clk_out_to_pin,wake_on_lock,secdiv,mult,div,post,pll_dly);

Simple PLL Instantiation
pll_name SPLL(clk_in,clk_out);

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

21

Standard PLL Instantiation
pll_name STDPLL(clk_in,pll_lock,clk_out);

Extended PLL Instantiation
pll_name STDPLLX(clk_in,pll_fbk,pll_rst,pll_lock,clk_out,sec_out);

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

22

Appendix E. A Complete Project Example with Test Bench for ModelSim in
VHDL
Top Module
--**************************************
--* VHDL source constraint example
--* Extended PLL configuration
--* Lattice Semiconductor Corporation
--**************************************
-- The following steps are required to use PLL functions in VHDL.
-- Step 1. Lattice library declaration
-- Step 2. PLL component declaration with generics (for simulation and Synplify –
-- synthesis)
-- Step 3. Parameter passing through attributes for the fitter (required by Exemplar)
-- Step 4. PLL hardcore instantiation
-- Step 5. Use of PLL outputs

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

--Step 1: Library declaration
library lattice;
use lattice.components.all;

entity extendedpll is
port (clk : in std_logic;
 rst : in std_logic;
 clken : in std_logic;
 pllfbk: in std_logic; -- PLL extended feed back input
 pllrst: in std_logic; -- PLL extended reset input
 qa : out std_logic_vector(3 downto 0);
 qb : out std_logic_vector(3 downto 0);
 qc : out std_logic_vector(3 downto 0);
 qd : out std_logic_vector(3 downto 0));
end extendedpll;

architecture behave of extendedpll is

--Step 2: PLL component declaration.
-- STDPLLX is a hard-coded PLL component.
component stdpllx
 generic(in_freq : string;
 mult : string;
 div : string;
 post : string;
 pll_dly : string;
 secdiv : string);
 port (clk_in : in std_logic;
 pll_fbk : in std_logic;
 PLL_RST : in std_logic;
 pll_lock : out std_logic;

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

23

 sec_out : out std_logic;
 clk_out : out std_logic);
end component;

-- Step 3: PLL parameter declaration
-- In STDPLLX, the following parameters are used.

attribute in_freq : string;
attribute mult : string;
attribute div : string;
attribute post : string;
attribute pll_dly : string;
attribute secdiv : string;
attribute clk_out_to_pin : string;
attribute pll_fbk_attribute : string;
attribute in_freq of i1 : label is "100.0000";
attribute mult of i1 : label is "8";
attribute div of i1 : label is "5";
attribute post of i1 : label is "2";
attribute pll_dly of i1 : label is "3";
attribute secdiv of i1 : label is "2";
attribute clk_out_to_pin of i1 : label is "OFF";
--attribute pll_fbk_attribute of i1 : label is "CLKTREE";
attribute pll_fbk_attribute of i1 : label is "ROUTE";

signal counta : std_logic_vector(3 downto 0);
signal countb : std_logic_vector(3 downto 0);
signal ppclk : std_logic;-- primary PLL clock out
signal lock : std_logic;-- PLL lock out
signal spclk : std_logic;-- secondary PLL clock out
signal scken : std_logic;

signal dummy : std_logic;

begin

-- Step 4: PLL instantiation
I1: STDPLLX
generic map (in_freq => "100.0000",

 mult => "8",
 div => "5",
 post => "2",
 pll_dly => "3",
 secdiv => "2")

port map (clk_in => clk,
pll_fbk => dummy, -- PLL extended feedback

-- pll_fbk => pllfbk, -- PLL extended feedback
pll_rst => pllrst, -- PLL reset
pll_lock => lock,
clk_out => ppclk,
sec_out => spclk);

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

24

process(ppclk)
begin
 if (rst = '0') then
 scken <= '0';
 elsif (ppclk'event and ppclk = '1') then

scken <= clken and lock;
 end if;
end process;

process(ppclk, scken, rst)
begin
 if (rst = '0') then

counta <= "0000";
-- Step 5: Use of PLL primary output clock
 elsif (ppclk'event and ppclk = '1') then

if scken = '1' then-- clock enable
 counta <= counta + "0001" ;
else
 counta <= counta;
end if;

 end if;
end process;

process(spclk, rst)
begin
 if (rst = '0') then

countb <= "0000";
-- Step 5: Use of PLL secondary output clock
 elsif (spclk'event and spclk = '1') then

countb <= countb + "0001" ;
 end if;
end process;

qa <= counta;
qb <= countb;

end behave;

Test Bench File
library ieee;
use ieee.std_logic_1164.all;

entity tb_stdpllx is
end tb_stdpllx;

architecture simulate of tb_stdpllx is

component extendedpll
port (

clk : in std_logic;
rst : in std_logic;
clken : in std_logic;

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

25

pllfbk : in std_logic;
pllrst : in std_logic;
qa : out std_logic_vector(3 downto 0);
qb : out std_logic_vector(3 downto 0));

end component;

signal inclk, rst, pllrst, pllfbk, clken: std_logic := '0';
signal qa_out : std_logic_vector(3 downto 0);
signal qb_out : std_logic_vector(3 downto 0);

begin

UUT : extendedpll port map (clk=>inclk, rst=>rst, clken=>clken, pllfbk =>pllfbk, pll-
rst=>pllrst,qa=>qa_out,qb=>qb_out);

inclk <= not inclk after 40 ns;

process
begin
 rst <= '0';
 pllrst <= '1';
 clken <= '0';
 wait for 200 ns;
 rst <= '1';
 pllrst <= '0';
 clken <= '1';
 wait for 10000 ns;
end process;

end simulate;

configuration cfg_tb of tb_stdpllx is
for simulate
end for;

end cfg_tb;

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-408-826-6002 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

	Introduction
	PLLs vs. DLLs
	sysCLOCK PLL
	Input Clock (M) Divider
	Feedback Loop (N) Divider
	Variable Delay Block
	VCO and Phase Detector Block
	Post-Scalar (V) Divider
	Secondary Clock (K) Divider
	CLK_IN Input
	PLL_RST Input
	PLL_FBK Input
	CLK_OUT Output
	SEC_OUT Output
	PLL_LOCK Output

	Design Tips
	PLL Attributes
	IN_FREQ
	MULT, DIV, POST and SECDIV
	PLL_DLY
	CLK_OUT_TO_PIN
	WAKE_ON_LOCK
	PLL_FBK_ATTRIBUTE
	Software Usage
	Macro Definitions
	PLL Usage in Module/IP Manager and HDL
	Including sysCLOCK PLLs in a Design
	Module/IP Manager Usage
	Normal Mode Window
	Advanced Mode Window
	Direct Instantiation Into Source Code

	PLL Usage in the ispLEVER Constraint Editor
	PLL Attributes Window
	Input Frequency
	Divider Configuration
	PLL_RST
	PLL_FBK
	PLL_LOCK
	CLK_OUT_TO_PIN
	WAKE_ON_LOCK
	PLL_DLY
	Timing Analysis and Simulation with PLLs
	Case 1. Internal Clock Net Internal Feedback
	Case 2. External Clock Internal Feedback
	Case 3. External Clock External Feedback
	Case 4. Internal Clock Net External Feedback
	Case 5. Secondary Clock Timing Internal Feedback
	Case 6. Secondary Clock Timing External Feedback

	Appendix A. PLL Attributes
	M, N and V Setting Limitations
	Appendix B. PLL Frequency Limit Equations
	Equations for Generating Input and Output Frequency Ranges

	Appendix C. PLL_LOCK Behavior
	Appendix D. Source Code Examples Generated by Module/IP Manager
	STDPLLX Module (Verilog)

	ABEL
	Library Instantiation
	Simple PLL Declaration
	Standard PLL Declaration
	Extended PLL Declaration
	Simple PLL Instantiation
	Standard PLL Instantiation
	Extended PLL Instantiation

	Appendix E. A Complete Project Example with Test Bench for ModelSim in VHDL
	Top Module
	Test Bench File

	Technical Support Assistance

