| attice

== ===Semiconductor

== mnmn Corporation

sysCLOCK" PLL Usage Guide for
iISpXPGA, ispGDX2, ispXPLD" and
ispPMACH" 5000VG Devices

Technical Note TN1003

September 2004

Introduction

As programmable logic devices (PLDs) grow in size and complexity, on-chip clock distribution becomes a major
factor in performance. The delay and skew of the clocks significantly affect the performance of the device. Further-
more, distribution of these clock signals to other devices on the board increases the complexity of the design. To
compensate for these effects, many of the Lattice devices include phase locked loops (PLLs) referred to as
sysCLOCK PLLs (Table 1).

Lattice’s sysCLOCK PLLs can be used to align the clock tree, distribute multiple clock frequencies, perform duty
cycle correction, and provide phase shift. As with most traditional PLLs, the internal PLLs compare the input clock
and output clock and compensate for the offset by adjusting the output frequency and phase through a voltage con-
trolled oscillator (VCO) and phase detector (Figure 1).

Figure 1. Phase-Locked Loop Block Diagram

Voltage Clock Output Clock
Controlled Distribution
Oscillator Network
Clock Input Phase Feedback

e

(Reference Clock) Detector

The sysCLOCK PLL includes dividers on the input, output, and feedback lines, which allow the PLL to synthesize
various output clock frequencies. In addition to the dividers, there are delay elements on the input and feedback
lines which shift the internal clock to allow the optimization of set-up and clock-to-out times. The PLLs also perform
duty cycle correction, which results in a stable 50/50-output duty cycle for various input duty cycles.

These features give designers the flexibility of creating a variety of clock signals within the PLD. This simplifies
board design and reduces cost, because designers no longer need external circuitry to create these clocks. The
PLL can further simplify the design by using the external feedback pin to align the clock at the board level.

Table 1. Lattice Device Families with sysCLOCK

Input Frequency Output Frequency
Device Family sysCLOCK PLLs Range (MHz) Range (MHz) Delay Step
ispMACH 5000VG 2 5-180 5-180 500 ps
ispXPLD 5000MX 2 10 - 320 10 - 320 250 ps
ispXPGA 8 10 - 320 10 - 320 250 ps
ispGDX2 Upto 4 10 - 320 10 - 320 333 ps

Note: Refer to the device data sheets for additional specifications.

www.latticesemi.com

tn1003_07

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

PLLs vs. DLLs

Today, two forms of clock synthesis and control (PLLs and DLLs) are embedded in CPLDs and FPGAs. Phase
locked loops (PLLs) are the oldest and most widely used form. Delay locked loops (DLLs) are newer, but use the
same basic concepts. Each has its own advantages and disadvantages.

PLLs are based on analog circuitry containing a voltage-controlled oscillator and a phase detector (Figure 1). The
phase detector references the input clock and feedback signal to determine the relationship between the two and
instructs the oscillator to either speed up or slow down the clock signal in order to make the input and feedback
match.

DLLs are based on digital circuitry containing a delay element and phase comparator (Figure 2). The input clock
and a signal from the phase comparator are both fed to the delay element, which introduces delay between the
input clock and the feedback until they are in phase. The phase comparator uses the feedback signal from the DLL
output and the clock input to determine the relationship and send a control signal to the delay element.

While DLLs tend to migrate between process technologies more easily due to their digital nature, they are some-
what limited in their functionality. PLLs, however, can provide much more flexible clock multiplication, division, con-
trol, and delay functionality.

Figure 2. Delay Locked Loop Block Diagram

i Clock Output Clock
e Distribution
Network
Feedback
(Refereifglglggﬁ; —> COMD#

sysCLOCK PLL

The sysCLOCK PLL receives its clock inputs from the global clock pins of the device and provides outputs to the
global clock nets. Additionally, each PLL has a set of PLL_RST, PLL_FBK, and PLL_LOCK signals used for exter-
nal control. Figure 3 shows the sysCLOCK PLL block diagram.

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

Figure 3. sysCLOCK PLL Block Diagram

> CLK_OUuT
Lock
> De"tzct — PLL_LOCK
— P M
ere Divider [™ > >
PLL_RST ' BLL PFD v
& —P
PLL_FBK C>———P» Delay veo Divider
- N >
L Divider
K SEC_OUT

Divider (To Neighbor
PLL K Divider)
(From Neighbor

4{ Route (Additional Delay) } PLL SEC_OUT)

*—

Input Clock (M) Divider

The Input Clock (M) Divider is used to control the input clock frequency into the PLL block. It can be set to an inte-
ger value of 1 to 32. The divider setting directly corresponds to the divisor of the output clock. The input and output
of the Input Divider must be within the input and output frequency ranges specified in the device data sheet. There-
fore, the value of the Input Divider significantly affects the input clock frequency range.

Feedback Loop (N) Divider

The Feedback Loop (N) Divider is used to divide the feedback signal. Effectively, this multiplies the output clock,
because the divided feedback must speed up to match the input frequency into the PLL block. The PLL block
increases the output frequency until the divided feedback frequency equals the input frequency. Like the input
divider, the feedback loop divider can be set to an integer value of 1 to 32. The input and output of the Feedback
Divider must be within the input and output frequency ranges specified in the device data sheet. Therefore, the
value of the Feedback Divider significantly affects the input and output clock frequency range.

Variable Delay Block

The PLL can insert or remove delay from CLK_OUT by inserting delay on the input or feedback lines. This effec-
tively gives the PLL phase shift capabilities. See the device data sheet for the delay range and delay increments.

VCO and Phase Detector Block

The operation of the VCO and Phase Detector block is the same as the basic PLL block described previously. It
synchronizes the input clock and feedback signals and performs duty cycle correction. When there is an input clock
(CLK_IN) signal the VCO and Phase Detector will oscillate to produce the correct output clock. When there is no
initial signal on CLK_IN, the VCO and Phase Detector will not start oscillating. When the CLK_IN signal is held
high, held low, disconnected or falls below the minimum input frequency the VCO and Phase Detector will stop
oscillating after a finite amount of time, which reduces power consumption. The input and output signals of the PLL
block must be within the frequency ranges specified in the device data sheet.

Post-Scalar (V) Divider

The Post-scalar (V) Divider compensates for the frequency range of the voltage-controlled oscillator output
(FVCO). This allows the input and output clocks to run at lower frequencies without compromising the stability of
the PLL. It can be set to values of 1, 2, 4, 8, 16 or 32.

Secondary Clock (K) Divider

The Secondary Clock (K) Divider feeds the global clock net. It divides the CLK_OUT signal of the PLL by the value
of the divider. It can be set to values of 2, 4, 8, 16 or 32. By design, a setting of 1 is not available as this would result
in an unnecessary duplication of the clocks.

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

CLK_IN Input

The global clock pins provide the CLK_IN signal for the sysCLOCK PLLs. The CLK_IN signal is the reference clock
for the PLL. CLK_IN must conform to the specifications in the data sheet in order for the PLL to operate correctly.

PLL_RST Input

The PLL_RST signal resets the timing of CLK_IN (M) Divider Output referenced to CLK_IN as shown in Figure 4.
The PLL_RST signal is not required, and if not used will be set to logic 0. The PLL_RST pin is a dual-purpose pin
that can be configured as PLL_RST or a regular 1/O signal. This signal is used to reference the starting point of the
PLL (the first edge of the input clock). The PLL_RST signal is active high.

The PLL_RST signal must be asserted for the minimum reset pulse width and de-asserted within the reset recov-
ery time before the clock, as defined in the device data sheet. The PLL_RST pin is most commonly used when mul-
tiple sysCLOCK PLLs are dividing the same input clock and a reset signal is needed to synchronize the PLLs
(Figure 4).

Figure 4. PLL_RST Timing Diagram (Example M=4)

CLK_IN

—» a4 sy

PLL_RST

(M+1) cycle !

For M=2...31 1 |
M Divider Output

ForM =1 I:l l

M Divider Output

>
For M = 32 I
M Divider Output I:l [

I:l M Divider output before reset

PLL_FBK Input

The feedback signal to the PLL, which is fed through the feedback divider can be derived from the global clock net
or the PLL_FBK pin. Feedback must be supplied in order for the PLL to synchronize the input and output clocks.
The PLL_FBK pin is a dual-purpose pin that can be configured as either PLL_FBK or a regular I/O signal. The
external feedback allows the designer to compensate for board-level clock alignment. Figure 5 is an example of a
possible configuration of the sysCLOCK PLL using the external PLL_FBK pin.

Figure 5. PLL_FBK Configuration

Clock
Distribution
Network

Clock Output

Clock Input ——

Feedback

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

CLK_OUT Output

The sysCLOCK PLL primary clock output, CLK_OUT, drives its associated clock net. Depending on the device,
CLK_OUT can also drive either routing or a dedicated dual-purpose pin. For those devices using dual-purpose
pins, they are configurable as either CLK_OUT pins or regular I/O pins, and the CLK_OUT signal is directly con-
nected to its associated CLK_OUT pin.

SEC_OUT Output

The secondary clock output, SEC_OUT, drives its neighbor, PLL clock net. The neighbor PLL is defined in the data
sheet.

When SEC_OUT is used, the neighbor PLL is not available as a PLL.

PLL_LOCK Output

The PLL_LOCK output provides information about the status of the PLL. After the device is powered up and the
input clock is valid the PLL will achieve lock within the specified lock time (i ock). Once lock is achieved the PLL
lock signal will be asserted. If during operation the input clock or feedback signals to the PLL become invalid the
PLL will lose lock. It takes time from the occurrence of the invalid signals until the PLL_LOCK signal is de-asserted.
Refer to the appendices for device-specific information.

In ispGDX2 devices, PLL_LOCK is routed to a dedicated pin.

Design Tips
1. Care must be taken not to violate the input jitter specification.

2. The input clock frequency must not exceed the specification detailed in the device data sheet. The divider
settings will effect the input and output frequency range of the PLL.

3. For the software to generate the best possible results, an input clock frequency should always be speci-
fied.

4. The divider settings cannot produce frequencies outside the range specified in the device data sheet.

5. The lowest common denominator should be used for multiply and divide values to maximize the input fre-
guency range.

6. The external PLL_FBK signal should be generated from the CLK_OUT signal.

7. lfthe PLL_LOCK signal is used as a clock enable, it should be synchronized before being used by the reg-
istered logic. The synchronization ensures that setup and hold times are not violated when PLL_LOCK is
asserted. Figure 6 shows a common example.

8. When the PLL is not used, the Vocp and GNDP pins should be electrically connected to Vg and GND,
respectively.

9. When the global clock pins are not used, they should be treated as no connects.

10. When using the external CLK_OUT pin to output the PLL primary output clock, the number of 1/0Os switch-
ing in the same bank as the CLK_OUT pin significantly affects the amount of jitter on this pin. Care should
be taken to reduce the number of switching I/Os in the bank to reduce the jitter on the CLK_OUT pin.

Figure 6. PLL_LOCK Common Usage Example

Logic D Q
Clock Enable) CE
PLL_LOCK D Q 4’7
CLK_OUT

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

PLL Attributes

The PLL utilizes several attributes that allow the configuration of the PLL through source constraints. The following
section details these attributes and their usage. Appendix A lists the attributes and the macros that utilize them.

IN_FREQ

The input frequency can be any value within the specified frequency range based on the divider settings. If the
divider settings are invalid, the software will generate and error. To determine if your divider settings are valid, use
the equations in Appendix B.

MULT, DIV, POST and SECDIV

The M, N, V and K dividers correspond directly to the DIV, MULT, POST, and SECDIV values respectively. The user
is not allowed to input an invalid combination; determined by the input frequency, the dividers, and the PLL specifi-
cations.

PLL_DLY

The “PLL_DLY” attribute is used to pass the Delay factor associated with the Output Clock of the PLL. This allows
the user to advance or retard the Output Clock by the value passed multiplied by PLL Delay Increment specified in
the data sheet as tPLL_DELAY.

CLK_OUT_TO_PIN

The “CLK_OUT_TO_PIN” attribute is used to configure the CLK_OUT pin as the PLL Output Clock or as a regular
I/0 pin. This attribute allows the designer the ability to route the global clock net associated with the PLL to the
CLK_OUT pin for observation or distribution on the board.

WAKE_ON_LOCK

The WAKE_ON_LOCK cell determines if the device will wait for the PLL to lock before beginning the wake-up pro-
cess. If the attribute is set to “ON”, the device will not wake up until the PLL_LOCK signal for the given PLL is
active. If is set to “OFF”, the device will wake up regardless of the state of the PLL_LOCK signal.

PLL_FBK_ATTRIBUTE
This attribute is designed for ispXPGA only. Default is CLKTREE (even when user do not add this attribute in HDL).

The ROUTE attribute allows users to add additional delay to the PLL_FBK.

Software Usage

The PLL is not an inherent part of most digital design tools. With the addition of PLLs to PLDs, there must be provi-
sions made to fully utilize the PLL. These provisions include VHDL, Verilog and ABEL components, and user con-
straints in the place and route tools. The following sections describe how to utilize the PLL in the Lattice design
tools.

Macro Definitions

The Lattice libraries contain components to allow designers to utilize the PLL. Each component has several
attributes associated with it for configuring the PLL. Appendix A lists these attributes, their meaning and the sym-
bols associated with the attribute.

Figure 7 shows the library symbol for a simple PLL (SPLL). This component is used to produce a zero delay/skew
clock using the PLL. It is the PLL with all the dividers set to one, the feedback generated internally, and the reset
disabled.

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

Figure 7. Simple PLL Component

SPLL
CLK_IN CLK_OUT

Figure 8 shows the library symbol for the Standard PLL (STDPLL). This macro has the PLL_LOCK output and
attributes for setting the multiply, divide, and post-scalar divider factors for the PLL and the programmable delay.

Figure 8. Standard PLL Component

STDPLL

— CLK_IN CLK_OUT —
PLL_LOCK —

Figure 9 shows the library symbol Extended PLL (STDPLLX). This symbol gives full access to all features of the
PLL including external reset and feedback.

Figure 9. Extended PLL Component

STDPLLX
CLK_IN CLK_OUT
PLL_FBK SEC_OUT
PLL_RST PLL_LOCK

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

PLL Usage in Module/IP Manager and HDL

Including sysCLOCK PLLs in a Design

The sysCLOCK PLL capability can be accessed either through the Module/IP Manager or directly instantiated in a
design’s source code. The following sections describe both classes of usage.

Module/IP Manager Usage

The sysCLOCK PLL in ispXPGA, ispGDX2 and ispXPLD use identical architecture and is fully supported in Mod-
ule/IP Manager in the Lattice ispLEVER® software. The Module/IP Manager allows the user to define the desired
PLL using a simple, easy-to-use GUI. Following definition, a VHDL or Verilog module that instantiates the desired
PLL is created. This module can be included directly in the user’s design.

Figure 10 shows the main window when PLL is selected. The only entry required in this window is the module
name. After entering a module name, click “Customize” to open the “Customizing” window, as shown in Figure 11.

Figure 10. Module/ IP Manager Main Window

% Module/IP Manager =S|

File Wie Help

| [|[Schematic/verilog HDL =] | [LFX1200C-04FEBBOC -l ® k‘?’

[=-{_] Architecture
Differential Signaling
% sysClock{PLL
sysHSI
=P Project Path: | c:\071 paulshintsw_projectsid1 _l
Q Module
Module Mame: l—
B Rl llistF'GA Design Entr: | SchematicAYerlog HOL - =
Macro_Type &
- Device: LF:1200C-04FEER0C hd
Company Lattice
Macro_Mame aysClockFLL
Cuiztomize | Help I
i | 1]
I Module/IP Manager is starting ... j
For Help, press F1 '7 W ,7 4

In the Main window, when sysClock/PLL is selected, the user only needs to enter the Module Name. Other entries
are already set when the project is created. The user can enter different Design Entry, Device and Project Path
parameters if desired.

Normal Mode Window

The next window starts with the default mode called ‘Normal Mode’. In this mode, the user sets the input and output
frequency and the GUI will calculate the divider settings.

This Window provides the ability to define the following:

+ Macro type

- Signal name

+ Mode of configuration
CLK_OUT_TO_PIN option
WAKE_ON_LOCK option
PLL_FBK_ATTRIBUTE option for XPGA
+ Input frequency and output frequency

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

+ Calculate the divider settings for the user

Figure 11. Normal Mode Window

7 Lattice - sysClock/PLL L J] [
tacro Type — Mode
Type: 'Wj " MNaormal = Advanced
STORLLS Sl e — L
ELEIN fek_in [~ CLK_OUT_TO_PIN
CLK_OUT | clk_out mi o e
PLL_RST |pll_rst [~ WAKE_ON_LOCK
SEC_OUT |sec_out
. ax out— S0 e PN Delay FactorPLL_DLYE[0 =]

- - PLL_LOCK [pll_lack Input Frequency(IM_FREQ]: | 100.0000
—PLL_FEK SEC_OUT— Output Frequency: | 160.0000
——PLL_RST PLL_LOCKH— Calculate Divider Settings Multiplication Factar[M): |E=_YJ

Divide Factor}[5 =

Fost-Scalar Divider(V]: |~=ﬂ

Secondary Divider[K]: IZ—_YJ
Secondary Output Frequency: Wg

Generate Load Parameters.. Cancel Help H

Advanced Mode Window

The window will change slightly when ‘Advanced Mode’ is selected. In this mode, the user sets input and divider
settings. The GUI will calculate output frequency automatically for the user.

The Customizing Window provides the ability to define the following:

+ Macro type

+ Signal name

+ Mode of configuration

+ CLK_OUT_TO_PIN option

+ WAKE_ON_LOCK option

+ PLL_FBK_ATTRIBUTE option for XPGA
+ Input frequency and divider settings

+ Calculate output frequency for the user

Clicking ‘Generate’ creates a VHDL (module name.vhd and module name_sim.vhd) or Verilog (module name.v,
module name.lpc, module name_sim.v and module nameheader.v) file in the working directory that instantiates the
core. The load parameters button can be used to reload configurations from previously created parameter files
(*.lpc files).

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

Figure 12. Advanced Mode Window

=loix|
Macro Type — Mode
T}'DEZIE‘TDPLU‘: ﬂ " Nomal &+ Advanced
STDPLLX Signal M ame ——Param
) b [~ CLk_OUT_Ta_PIN
CLE_OUT |clk_out - T
PLL_RST [pll_rst [~ ‘WAKE_ON_LOCK.
SEC_OUT |sec_out .
o e ouT S e PN Delay Factnr[F‘LL_DLY]:lﬂ =
PLL_LOCK [l ook Input Frequency(IN_FREQ]: | 100.0000
—PLL_FEK SEC_OUT— Output Frequency: | 160.0000
—PLL_RST PLL_LOCK | — Calculate Output Frequency IMultiplication Factor(M): IS ZI
Divide Factort):[5 | w]
Fost-Scalar Divider[v): |2 ZI
Secondary Divider[K]: |2 ZI
Secondary Output Frequency: ISH aooa ﬂ
Generate Load F'arameters..l Cancel | Help "

Direct Instantiation Into Source Code

If desired, the Module/IP Manager can be bypassed and the sysCLOCK PLL can be instantiated directly in the
source code. Appendix A provides examples of source code generated by the Module/IP Manager. These exam-
ples can be used as templates for directly instantiating the sysCLOCK PLL in the source code.

PLL Usage in the ispLEVER Constraint Editor

The ispLEVER Constraint Editor includes a PLL Attribute Sheet. This sheet gives the user the ability to view the
settings of the sysCLOCK PLL instantiation. Table 2 is an illustration of the PLL Attribute Sheet.

Table 2. PLL Attributes Sheet

PLL Type | Input Clock | Input Frequency | Output Clock | Secondary Clock | CLK_OUT_TO_PIN | WAKE_ON_LOCK | Multiply | Divide | SecDiv | PLL_RST | PLL_FBK | PLL_LOCK | PLL_DLY | PLL_FBK_Attribute
STDPLLX | CLK_INT 100.0000 PPCLK SPCLK OFF OFF 2 2 2 PLLRST -7 CLKTREE

Settings can be fine-tuned without changing the design source by using the PLL Attributes Settings window.

PLL Attributes Window

The ispLEVER Constraint Editor also includes a PLL Attributes Window. This window includes two sections (Fre-
quency and Existing PLL Attributes). At the top of the window there is a grayed text box displaying the PLL type, a
check box for setting the CLK_OUT_TO_PIN attribute, and a dial box for setting the PLL_DLY attribute. Figure 13
illustrates the PLL Attributes Window.

10

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

Figure 13. PLL Attributes Window

i PLL Attributes x|
PLL_FBK Attribute
FLL Type STDPLLX [~ CLK_OUT_TO_PIN Delay FactorPLL_DLY) |.? | & CLKTREE
I~ Ww&KE_DN_LOCK " ROUTE
C realinumber |

Frequency

Input Clock W Multiply (N) [—2 Secondary Dutput Clock IW

Input Frequency lw Divide [M) |—2 Secondary Output Frequency Im
Output Clock]ppclki Post-Scalar (V) [—2
Output Frequency IW Secondary Div [K) ﬁ

Existing PLL Attribute List

Calculate Divider Settings I Advanced... |

Update I Undo Mndifyl Delete I (1K | Cancel | Help I

y

The “Frequency” section has text boxes to modify the input frequency and output frequency, grayed text boxes dis-
playing the input clock, output clock, divider settings, and secondary output clock. There is a grayed drop-down box
that allows the user to select a Secondary Output Frequency. One of the 5 possible frequencies, given the current
output frequency (access to the K-Divider without actually setting the K-Divider). When a Secondary Output Fre-
quency is selected from the drop-down box, the K-Divider setting will change to the setting that corresponds to that
frequency. There are two buttons labeled “Calculate Divider Settings” and “Advanced”. The “Calculate Divider Set-
tings” button updates the M, N, and V divider settings and Secondary Output Frequency when the input or output
frequencies are modified. If an output frequency is entered that can not be achieved, a warning message displays
the closest obtainable output frequency. The “Advanced...” button opens the “Advanced PLL Frequency Settings”
window.

The “Existing PLL Attributes List” section has a window displaying the current PLL attributes from the PLL
Attributes Sheet. When a PLL is selected in this window and the “Modify” button is selected, that PLL becomes
available for modification and all of its settings are displayed.

The “Advanced PLL Frequency Settings” window has the same appearance as the “Frequency” section of the PLL
Attributes window. However, the Output Frequency is grayed out and the Divider settings are displayed in the mid-
dle of the window. This window allows the user to update the divider settings and calculate the resulting output fre-
quency. Figure 14 illustrates the Advanced PLL Frequency Settings Window.

11

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

Figure 14. Advanced PLL Frequency Settings Window

Advanced PLL Frequency Settings x|

Secondary Dutput Clock. Ispclk
2 Secondary Output Frequency I 50.0000

Input Clock. |clk_int Multiply [N)

Input Frequency 100.0000 Divide [M)

Output Clock |ppclk Post-Scalar V)

i
111

Dutput Frequency 100.0000 Secondary Div [K) z Calculate Dutput Fregquency |

| 0K I Cancel | Help |

The Constraint Editor determines the input and output frequencies based on the selected divider settings. If the
input frequency given in the design source is out of range, the Constraint Editor will flag the problem and report the
possible input frequency range based on the divider settings.

Furthermore, the CLK_OUT_TO_PIN attribute can be set from within the Constraint Editor. This allows the
designer to route the PLL output to the CLK_OUT pin for evaluation without changing the design source.

Input Frequency

The input frequency can be any value within the specified frequency range based on the divider settings. If the
divider settings are invalid, the Constraint Editor will generate and error. To determine if your divider settings are
valid, use the equations in Appendix B.

Divider Configuration

The M, N, V and K dividers correspond directly to the DIV, MULT, POST, and SECDIV values in the Constraint Edi-
tor, respectively. The user is not allowed to input an invalid combination; determined by the input frequency, the
dividers, and the PLL specifications.

PLL_RST

The PLL_RST cell automatically displays the pin or node name from the source file that is connected to the reset
line. If there is no reset defined, the PLL_RST cell will be empty and the PLL will only reset on power-up.

PLL_FBK

The PLL_FBK cell automatically displays the pin or node name from the source file that is connected to the feed-
back line. If there is no feedback defined, the PLL_FBK cell will be empty and the PLL will use the internal feedback
in the device.

PLL_LOCK

The PLL_LOCK cell automatically displays the pin or node name from the source file that is connected to the lock
line. If a lock signal is not defined in the source file, the PLL_LOCK cell will be empty and the lock signal will not be
available.

CLK_OUT_TO_PIN

The CLK_OUT_TO_PIN cell displays the state of the CLK_OUT signal being routed to the dedicated CLK_OUT
pin. If it is routed to the pin, the cell will display “ON”. If it is not routed out to the pin, the cell will display “OFF”. By
default, the CLK_OUT_TO_PIN attribute is “OFF”. However, if the design source declares the CLK_OUT signal as
an output, the CLK_OUT_TO_PIN attribute will be ignored and the CLK_OUT signal will be routed to the
CLK_OUT pin.

12

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

WAKE_ON_LOCK

The WAKE_ON_LOCK cell determines if the device will wait for the PLL to lock before beginning the wake-up process. If
the cell displays “ON”, the device will not wake up until the PLL_LOCK signal for the given PLL is active. If the cell
displays “OFF”, the device will wake up regardless of the state of the PLL_LOCK signal.

PLL_DLY

The PLL_DLY value defaults to an empty cell, resulting in zero delay inserted. The cell sets the number of delay
increment steps. The delay increment value is specified in the device data sheet as tp| | pgay Modifying the value
in the PLL delay cell advances or delays the CLK_OUT signal by the set value multiplied by the delay increment.
Negative values specify advancement, and positive values add delay.

Timing Analysis and Simulation with PLLs

The use of the sysCLOCK PLL feature in Lattice devices significantly affects the timing of the device. The following
cases outline the timing analysis and simulation implications of many common uses of the sysCLOCK PLLs. In all
cases, the divider settings and delay settings of the PLL are included in the simulation of the device. The simulation
does not compensate for external delays and dividers in the feedback loop. Furthermore, the PLL_LOCK signal is
not simulated according to the t ook specification. The PLL_LOCK signal will appear active shortly after the simu-
lation begins, but will remain active throughout the simulation.

Case 1. Internal Clock Net Internal Feedback

When the registers of the design are driven by the output clock of the PLL (CLK_OUT) and the PLL_FBK signal is
generated internally, the Lattice design tools automatically adjust the delay associated with the clock net and the
resulting simulation mimics the device behavior.

Case 2. External Clock Internal Feedback

When the PLL drives a clock signal off chip but derives its feedback internally, the timing of the clock output signal
(CLK_OUT) at the device pin relative to the input clock (GCLK) at the device pin is defined by the tc x ouT DLY
specification in the data sheet. The Lattice design tools automatically compensate for this delay and the simulation
of the output clock will reflect the correct timing.

Case 3. External Clock External Feedback

When the PLL uses external feedback and the PLL drives the clock signal off chip, the input clock to external feed-
back delta (t,) specification defines the delay between the input clock and the feedback. This delay is not reflected
in the timing simulation. The timing tool always assumes local feedback and it simulates a clock delay of
tcLk ouT pLy- To compensate for any delay in the feedback, the input clock must be advanced by the same amount
as the delay in the feedback plus the inherent delay of the input clock and feedback pins (ty) (Equation 6).

tapv_INpuT = trBK DLY t ty + tcLk_ouT by (6)

Where tapy |npuT IS the amount to advance the input clock and trgk piy is the amount of delay in the feedback
line. The tc) k_ouT pLy Parameter should only be used when the feedback is generated by the CLK_OUT pin.

Case 4. Internal Clock Net External Feedback

When the PLL provides the clock for internal registers and uses external feedback, the Lattice design tools do not
adjust the simulation models to account for the delay in the feedback. To compensate for any delay in the feedback,
the input clock must be advanced by the same amount as the delay in the feedback (See Equation 6).

Case 5. Secondary Clock Timing Internal Feedback

When the PLL drives internal resisters via the secondary clock divider and uses internal feedback, the Lattice
design tools adjust the delay associated with the clock net through the use of the internal adder tp|| sec peLAy-

13

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

Thus the design tools provide the correct timing simulations for the registers connected to the corresponding clock
net.

Case 6. Secondary Clock Timing External Feedback

When the PLL drives internal resisters via the secondary clock divider and uses external feedback, the Lattice
design tools do not adjust the simulation models to account the delay in the feedback. To compensate for any delay

in the feedback, the input clock must be advanced by the same amount as the delay in the feedback (See Equation
6).

14

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

Appendix A. PLL Attributes

Components Applied
Attribute Name Value Default Description SPLL |STDPLL |STDPLLX

IN_FREQ Real None Sets input clock frequency’ X X X
MULT Integer 2 N divider setting: 1 to 32 X X
DIV Integer 2 M divider setting: 1 to 32 X X
POST Integer 1 V divider setting: 1,2,4,8,16, 32 X X
SECDIV Integer None K divider setting: 2,4,8,16,32 X
PLL_DLY Integer 0 Delay Factor: -7,-6,..0..6,7 X X
CLK_OUT_TO_PIN ON, OFF OFF Sets PLL output clock to CLK_OUT pin| X X X
WAKE_ON_LOCK ON, OFF OFF Determines if the device will wait for the X X X

PLL to lock before beginning the wake-

up process
PLL_FBK_ATTRIBUTE? CL(I)(TEE, CLKTREE |Add additional delay to the feedback X

ROUTE

1. Down to 4-bit resolution after decimal point in MHz.
2. For ispXPGA only.

M, N and V Setting Limitations

All combinations of M, N and V values are allowed as long as the frequency is within the specified range. Excep-
tion: the combination of M=1, N=1 and V=1 is not a valid combination for ispXPGA, ispGDX2 and ispXPLD. The V
divider must be set to produce the highest possible fypyn for optimum PLL performance.

15

sysCLOCK PLL Usage Guide for ispXPGA,

Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

Appendix B. PLL Frequency Limit Equations

The divider values are specified as M, N, V, and K, which correspond to the DIV, MULT, POST, and SECDIV set-
tings, respectively.

These values for fiy foyt and fypyy are the absolute frequency ranges for the sysCLOCK PLL. The values for fiy.
MmN, finmaxs foutmin, @nd fouTmax are the calculated frequency ranges based on the divider settings. These calcu-
lated frequency ranges become the limits for the specific divider settings used in the design. An error will be
generated if fj\ or foyT Vviolate these calculated frequency ranges.

Equations for Generating Input and Output Frequency Ranges

ispMACH 5000VG
Min. (MHz) Max. (MHz)
iy 5 180
fout 5 180
fypiviDin 60 200

fINMIN = (fVD|V|D|NM|N /(V*N))*M, if below 5*M round up to 5*M

f|NMAX = (fVD|V|D|NMAX /(V*N))*M, if above 180 round down to 180

fOUTM|N = f|NM|N*(N/M)1 if below 5*N round up to 5*N

fOUTMAX = finmax (N/M), if above 180 round down to 180

fvpivin = fout "V

If finmin > finmax, the divider settings are invalid. If fiyyy is above 180MHz or fiywmax is below 5MHz, the divider val-

ues are invalid.

ispXPGA, ispGDX2, ispXPLD

fINMIN = (fVDIVIDINMIN /(V*N))*M, if below 10*M round up to 10*M
fINMAX = (fVDIVIDlNMAX /(V*N))*M, if above 320 round down to 320

Min. (MHz) Max. (MHz)
fin 10 320
fout 10 320
fypiviDin 100 400

fOUTMIN = leMlN*(N/M)’ if below 10*N round up to 10*N

fOUTMAX = f|NMAX*(N/M)’ if above 320 round down to 320

fvpivin = foutr * V

If finmin > finmax, the divider settings are invalid. If fyyyy is above 320MHz or fi\yax is below 10MHz, the divider

values are invalid.

16

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

Appendix C. PLL_LOCK Behavior

The PLL_LOCK signal in the ispMACH™ 5000VG does not indicate an “out-of-lock” condition immediately after the
PLL looses lock given certain conditions. This also implies that the PLL_LOCK signal does not indicate when a
clock cycle is missing from the input clock under these conditions. Table 3 describes the behavior of the
PLL_LOCK signal in the ispMACH 5000VG devices.

Table 3. ispMACH 5000VG PLL_LOCK Behavior

Previous State of
CLK_IN PLL_RST PLL_LOCK Next State of PLL_LOCK
Normal Operation 0 0 1 after t_ ook
Normal Operation 0 1 1
Normal Operation 1 0 0
Normal Operation 1 1 0 after 5us
Stuck High 0 0 0
Stuck High 0 1 0 after 5us
Stuck High 1 0 0
Stuck High 1 1 0 after 5us
Stuck Low 0 0 0
Stuck Low 0 1 1
Stuck Low 1 0 0
Stuck Low 1 1 0 after 5us

17

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

Appendix D. Source Code Examples Generated by Module/IP Manager

STDPLLX Module (Verilog)
Header File for Verilog

module STDPLLX(CLK IN, PLL FBK, PLL RST, PLL LOCK, SEC OUT, CLK OUT);

parameter in freq = "1";
parameter mult = "1";

parameter div = "1";

parameter post = "1";

parameter pll dly = "1";
parameter secdiv = "1";
parameter clk out to pin = "ON";
parameter wake on lock = "OFF";

input CLK_IN;
input PLL FBK;
input PLL RST;
output CLK_OUT;
output PLL_ LOCK;
output SEC_OUT;

endmodule

//This design can be synthesized by Synplify and LeonardoSpectrum.
//It contains attributes for both synthesis tools.

module xt(clk in, pll fbk, pll rst, clk out, sec _out, pll lock);

input clk inj;
input pll fbk;
input pll rst;
output clk out;
output pll lock;
output sec_out;

defparam Il.in freq = "100.0000",

Il.mult = "8",

Il.div = "5",

Il.post = "2",

I1.pll dly = "0",
Il.secdiv = "2",
Il.clk _out to pin = "OFF",
Il.wake on lock = "OFF";

STDPLLX Il (.CLK IN(clk in), .PLL FBK(pll fbk), .PLL RST(pll rst),
.CLK_OUT(clk out), .PLL LOCK(pll lock), .SEC OUT(sec_out));

18

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

// exemplar attribute Il in freq 100.0000
// exemplar attribute Il mult 8

// exemplar attribute Il div 5

// exemplar attribute Il post 2

// exemplar attribute Il pll dly 0

// exemplar attribute I1 secdiv 2

// exemplar attribute Il clk out to_pin OFF
// exemplar attribute Il wake on lock OFF

endmodule

STDPLLX Module (VHDL)

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;
library lattice;

use lattice.components.all;

entity txx is

port (clk_in : in std logic;
pll fbk : in std_logic;
pll rst : in std_logic;
clk out : out std logic;
sec_out : out std logic;
pll lock : out std logic);
end txx;

architecture behave of txx is
component STDPLLX

generic(in freq : string;
clk out to pin : string;
wake on lock : string;
mult : string;
div : string;
post : string;
pll dly : string;
secdiv : string);

port (CLK_IN: in std logic;
PLL FBK: in std_logic;
PLL RST: in std_logic;
CLK_OUT: out std_logic;
PLL LOCK: out std_logic;
SEC_OUT: out std logic);

end component;

19

Lattice Semiconductor

sysCLOCK PLL Usage Guide for ispXPGA,
ispGDX2, ispXPLD and ispMACH 5000VG Devices

attribute in freq string;
attribute mult string;
attribute div string;
attribute post string;
attribute pll dly string;
attribute secdiv string;
attribute clk out to pin string;
attribute wake on lock string;
attribute in freq of Il label is "100.0000";
attribute mult of Il label is "8";
attribute div of Il label is "5";
attribute post of Il label is "2";
attribute pll dly of Il label is "0";
attribute secdiv of Il label is "2";
attribute clk out to pin of Il label is "OFF";
attribute wake on lock of Il label is "OFF";
begin
Il: STDPLLX
generic map(

in freq => "100.0000",

mult => "g",

div = "5",

post => "2",

pll dly = "Qo",

secdiv => "2",

clk out to pin => "OFF",

wake on lock => "OFF")
port map(CLK_IN => clk in,

PLL_FBK => pll fbk,

PLL_RST => pll rst,

CLK_OUT => clk out,

PLL_LOCK => pll lock,

SEC_OUT => sec_out);

end behave;

ABEL

Library Instantiation
library 'lattice';
Simple PLL Declaration

LAT SPLL(clk in,in freq,clock out to pin,wake on lock);

Standard PLL Declaration
LAT STDPLL(clk _in,in freq,clk out to pin,wake on lock,mult,div,post,pll dly);

Extended PLL Declaration

LAT STDPLLX(clk in,in freq,clk out to pin,wake on lock,secdiv,mult,div,post,pll dly);

Simple PLL Instantiation
pll name SPLL(clk in,clk out);

20

sysCLOCK PLL Usage Guide for ispXPGA,

Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

Standard PLL Instantiation
pll name STDPLL(clk in,pll lock,clk out);
Extended PLL Instantiation

pll_name STDPLLX(clk_in,pll fbk,pll rst,pll_lock,clk out,sec_out);

21

sysCLOCK PLL Usage Guide for ispXPGA,
Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices

Appendix E. A Complete Project Example with Test Bench for ModelSim in
VHDL

Top Module

——kkkkhkhkhkhkhkhhhhhhhhhhhdhhdhdhdhddhddddddddhdd*x

--* VHDL source constraint example

--* Extended PLL configuration

--* Lattice Semiconductor Corporation

—_——kkkkkhkkhkkhkhkhkkhhkhkkhhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkkkkk*k

-- The following steps are required to use PLL functions in VHDL.

—- Step 1. Lattice library declaration

—-- Step 2. PLL component declaration with generics (for simulation and Synplify —
-- synthesis)

—- Step 3. Parameter passing through attributes for the fitter (required by Exemplar)
—-- Step 4. PLL hardcore instantiation

-- Step 5. Use of PLL outputs

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;

—--Step 1l: Library declaration
library lattice;

use lattice.components.all;

entity extendedpll is

port (clk : in std _logic;
rst : in std _logic;
clken : in std _logic;
pllfbk: in std logic; -- PLL extended feed back input
pllrst: in std logic; -- PLL extended reset input
ga : out std logic vector (3 downto 0);
gb : out std logic vector (3 downto 0);
qc : out std logic vector (3 downto 0);
qd : out std logic vector (3 downto 0));

end extendedpll;
architecture behave of extendedpll is
--Step 2: PLL component declaration.

- STDPLLX is a hard-coded PLL component.
component stdpllx

generic(in_freq : string;
mult : string;
div : string;
post : string;
pll dly : string;
secdiv : string);
port (clk in : in std logic;
pll fbk : in std logic;
PLL RST : in std logic;
pll lock : out std logic;

22

Lattice Semiconductor

sysCLOCK PLL Usage Guide for ispXPGA,
ispGDX2, ispXPLD and ispMACH 5000VG Devices

sec_out
clk out
end component;

out std_logic;
out std _logic);

-- Step 3: PLL parameter declaration

In STDPLLX, the following

parameters are used.

attribute in freq : string;

attribute mult : string;

attribute div : string;

attribute post : string;

attribute pll dly : string;

attribute secdiv : string;

attribute clk out to pin : string;

attribute pll fbk attribute : string;

attribute in freq of il : label is "100.0000";
attribute mult of il : label is "8";
attribute div of il : label is "5";
attribute post of il : label is "2";
attribute pll dly of il : label is "3";
attribute secdiv of il : label is "2";
attribute clk out to pin of il : label is "OFF";
--attribute pll fbk attribute of il : label is "CLKTREE";
attribute pll fbk attribute of il : label is "ROUTE";

signal counta

signal countb

signal ppclk

signal lock

signal spclk

signal scken

signal dummy

begin

-- Step 4: PLL instantiatio

Il: STDPLLX

generic map (in freq
mult
div
post
pll dly
secdiv

port map (clk _in
pll fbk

-- pll fbk
pll _rst
pll _lock
clk out
sec_out

n

std logic_ vector(3 downto 0);

std logic_ vector(3 downto 0);

std logic;-- primary PLL clock out
std logic;-- PLL lock out

std logic;-- secondary PLL clock out
std logic;

std logic;

"100.0000",
ngn,

g
v,
v,
"2
clk,
dummy,
pllfbk,
pllrst,
lock,
ppclk,
spclk);

--— PLL extended
--— PLL extended
—-— PLL reset

feedback
feedback

23

Lattice Semiconductor

sysCLOCK PLL Usage Guide for ispXPGA,
ispGDX2, ispXPLD and ispMACH 5000VG Devices

process (ppclk)
begin
if (rst = '0') then
scken <= '0"';

elsif (ppclk'event and ppclk
scken <= clken and lock;

end if;
end process;

process (ppclk, scken, rst)
begin
if (rst = '0') then

counta <= "0000";

'1l') then

—-- Step 5: Use of PLL primary output clock

elsif (ppclk'event and ppclk = 'l') then
if scken = 'l' then-- clock enable
counta <= counta + "0001" ;

else

counta <= counta;

end if;
end if;
end process;

process(spclk, rst)
begin
if (rst = '0') then

countb <= "0000";

-- Step 5: Use of PLL secondary output clock

elsif (spclk'event and spclk
countb <= countb +

end if;
end process;

ga <= counta;
gb <= countb;

end behave;

Test Bench File

library ieee;
use ieee.std logic 1164.all;

entity tb stdpllx is
end tb stdpllx;

'l') then
"0001"

4

architecture simulate of tb stdpllx is

component extendedpll
port (
clk
rst
clken

in std logic;
in std logic;
in std logic;

24

sysCLOCK PLL Usage Guide for ispXPGA,

Lattice Semiconductor ispGDX2, ispXPLD and ispMACH 5000VG Devices
pllfbk : in std logic;
pllrst : in std logic;
ga : out std logic vector (3 downto 0);
gb : out std logic vector (3 downto 0));
end component;
signal inclk, rst, pllrst, pllfbk, clken: std logic := '0';

signal ga out : std logic_vector(3 downto 0);
signal gb out : std logic_vector(3 downto 0);

begin

UUT : extendedpll port map (clk=>inclk, rst=>rst, clken=>clken, pllfbk =>pllfbk, pll-
rst=>pllrst,ga=>ga_out,gb=>gb _out);

inclk <= not inclk after 40 ns;

process

begin
rst <= '0';
pllrst <= '1';
clken <= '0';
wait for 200 ns;
rst <= '1';
pllrst <= '0';
clken <= '1';
wait for 10000 ns;

end process;

end simulate;

configuration cfg tb of tb_stdpllx is
for simulate
end for;

end cfg tb;

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)
+1-408-826-6002 (Outside North America)

e-mail: techsupport@Iatticesemi.com

Internet: www.latticesemi.com

25

	Introduction
	PLLs vs. DLLs
	sysCLOCK PLL
	Input Clock (M) Divider
	Feedback Loop (N) Divider
	Variable Delay Block
	VCO and Phase Detector Block
	Post-Scalar (V) Divider
	Secondary Clock (K) Divider
	CLK_IN Input
	PLL_RST Input
	PLL_FBK Input
	CLK_OUT Output
	SEC_OUT Output
	PLL_LOCK Output

	Design Tips
	PLL Attributes
	IN_FREQ
	MULT, DIV, POST and SECDIV
	PLL_DLY
	CLK_OUT_TO_PIN
	WAKE_ON_LOCK
	PLL_FBK_ATTRIBUTE
	Software Usage
	Macro Definitions
	PLL Usage in Module/IP Manager and HDL
	Including sysCLOCK PLLs in a Design
	Module/IP Manager Usage
	Normal Mode Window
	Advanced Mode Window
	Direct Instantiation Into Source Code

	PLL Usage in the ispLEVER Constraint Editor
	PLL Attributes Window
	Input Frequency
	Divider Configuration
	PLL_RST
	PLL_FBK
	PLL_LOCK
	CLK_OUT_TO_PIN
	WAKE_ON_LOCK
	PLL_DLY
	Timing Analysis and Simulation with PLLs
	Case 1. Internal Clock Net Internal Feedback
	Case 2. External Clock Internal Feedback
	Case 3. External Clock External Feedback
	Case 4. Internal Clock Net External Feedback
	Case 5. Secondary Clock Timing Internal Feedback
	Case 6. Secondary Clock Timing External Feedback

	Appendix A. PLL Attributes
	M, N and V Setting Limitations
	Appendix B. PLL Frequency Limit Equations
	Equations for Generating Input and Output Frequency Ranges

	Appendix C. PLL_LOCK Behavior
	Appendix D. Source Code Examples Generated by Module/IP Manager
	STDPLLX Module (Verilog)

	ABEL
	Library Instantiation
	Simple PLL Declaration
	Standard PLL Declaration
	Extended PLL Declaration
	Simple PLL Instantiation
	Standard PLL Instantiation
	Extended PLL Instantiation

	Appendix E. A Complete Project Example with Test Bench for ModelSim in VHDL
	Top Module
	Test Bench File

	Technical Support Assistance

