

ORCA® Series 4 I/O Tuning via PLL

August 2002 Technical Note TN1011

Introduction

This technical note describes how to use the Series 4 phase-locked loops (PLLs) to solve several classic timing issues that face FPGA designers. Series 4 FPGAs and FPSCs provide the designer with up to six general-purpose programmable PLLs (PPLLs) capable of operating at speeds of 15-420 MHz.

Note: This technical note assumes the reader's familiarity with the concepts covered in technical note number TN1014. *ORCA Series 4 FPGA PLL Elements*.

Description of I/O Timing Issues

Three common timing problems are discussed below:

- 1. When an FPGA is communicating with an off-chip agent, the designer usually must meet timing requirements of an interface definition that specifies timing at the FPGA's pin boundary. However, internally, the timing is defined in terms of relationships between the clock and data signals at the internal ports to the registers. This difference in point of definition leads to problems for the designer, who must reconcile these two timing domains to one another.
- 2. A second problem arises from the fact that the external interface specification defines input setup and hold requirements without regard to the FPGA's internal capabilities, and although the external specification may provide for an adequate data window (setup + hold), this window's position relative to the clock's active edge is often less than optimum from the FPGA's perspective. It would be helpful if the designer could "borrow" from a loose input setup requirement in order to "lend" to a tight input hold requirement, or vice-versa.
- 3. A third issue involves the interplay between the clock-to-out requirement of the driving device and the input setup specification of the receiving device. Some protocols specify a zero or negative value for input setup (meaning that the data window begins at or after its clock). This makes it easier for the system to avoid "shoot-through" problems, since the driving chip can't change output data until after its reference clock edge occurs. Conversely, a protocol can specify a negative value for clock-to-out, meaning that the driving device must begin sending valid data before it receives the associated input clock edge.

All of these problems can be addressed by conditioning the clock with a PLL.

What a PLL can do:

- Null out clock tree delay or otherwise shift the clock to adjust its delay
- · Provide clock phase shifting in increments of 1/8 of a clock period
- Perform clock frequency multiplication/division (not discussed here)
- Perform clock duty cycle conditioning (not discussed here)

What a PLL cannot do:

- Handle clocks having a varying frequency
- · Handle clocks having a frequency outside prescribed limits
- · Handle clocks that stop
- Null out net delay of the portion of the clock net from the device's clock input pin to the PLL input (although an equivalent value can be nulled out, as outlined below)
- Perform two or all of the following in a single PLL:
 - Frequency multiplication/division
 - Phase shifting between clock outputs MCLK and NCLK
 - Duty cycle conditioning

Solution #1: Reconciling Internal Timing to an External Specification

Case I: PLL With Internal Feedback

A PLL can be used to "null out" the delay introduced by a clock net. In so doing, the clock loads on that net are effectively brought closer in timing to the device's external clock input pin, allowing timing to be referenced to that pin. This section explains how that is accomplished.

Figure 1 illustrates a clock net that includes a PLL. The PLL is in Delay Mode and the FB (feedback) input is driven by the PLL's INTFB (internal feedback) output. The resulting timing is shown in Figure 2, which contains an excerpt from the actual Trace report (*.twr) of this design. Table 1 correlates the paths in Figure 1 with the delays in Figure 2. When the feedback is internal, a small portion of the PLL's delay is nulled out, and the resultant delay [A to EX] is large.

Figure 1. Clock Tree with PLL, No Nulling

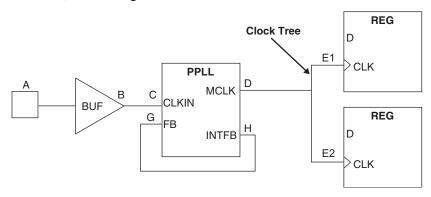


Table 1. Correlation of Schematic and Trace Reports

Path in Figure 1	Line in Figure 2	Delay
A to B	Line 130	1.480 ns
B to C	Line 131	1.730 ns
C to D	Line 132	0.385 ns
D to EX	Line 133	2.863 ns
C to H	Line 147	0.000 ns
H to G	Line 148	0.097 ns

Figure 2. PLL with Internal Feedback

Case I: Trace Report, PLL with Internal Feedback (Refer to Figure 1)

```
Line 101
                   ______
                  Preference: CLOCK TO OUT PORT "d out" 7.000000 ns CLKNET "clk c";
                             1 item scored, 1 timing error detected.
Line 105
                  Error: The following path exceeds requirements by 4.657ns
                   Logical Details: Cell type Pin type
                                                             Cell name (clock net +/-)
Line 110
                                    IO-FF Out Q
                                                             d out 0io (from mclk +)
                     Destination:
                                    Port
                                              Pad
                                                             d out
                     Data Path Delay: 5.296ns (100.0% logic, 0.0% route), 1 logic levels.
Line 115
                     Clock Path Delay: 6.458ns (28.9% logic, 71.1% route), 2 logic levels.
                   Constraint Details:
Line 120
                        6.458ns delay clk to d out less
                        0.097ns feedback compensation
                        5.296ns delay d_out to d_out (totaling 11.657ns) exceeds
                        7.000ns offset clk to d out by 4.657ns
Line 125
                  Physical Path Details:
                        Clock path clk to d out:
                                                      Site C6.INDD clk
                     Name
                             Fanout Delay (ns)
                                                                          Resource
                                     1.480 C6.PAD to CULTUS 1
1.730 C6.INDD to ULPPLL.CLKIN clk c
Line 130
                   IN DEL
                   ROUTE
                              2
                                     0.385 ULPPLL.CLKIN to
                  MCLK DEL
                              ---
                                                             ULPPLL.MCLK pll macro inst/pll macro 0 0
                  ROUTE
                               1
                                     2.863
                                             ULPPLL.MCLK to
                                                                    E8.SC mclk
Line 135
                                     6.458 (28.9% logic, 71.1% route), 2 logic levels.
                        Data path d_out to d_out:
                                     Delay (ns)
                                                       Site
                     Name
                             Fanout
                                                                          Resource
Line 140
                  OUTREGSL_D ---
                                                   E8.SC to
                                                                  E8.PAD d_out (from mclk)
                                     5.296
                                     5.296 (100.0% logic, 0.0% route), 1 logic levels.
                        Feedback path:
Line 145
                     Name
                             Fanout Delay (ns)
                                                        Site
                                                                          Resource
                                            ULPPLL.CLKIN to ULPPLL.INTFB pll macro inst/pll macro 0 0
                   INTFB DEL
                             ___
                                     0.000
                                     0.097 ULPPLL.INTFB to
                                                               ULPPLL.FB pll macro inst/fb
Line 150
                                     0.097
                                            (0.0% logic, 100.0% route), 1 logic levels.
                  Warning: 11.657ns is the minimum offset for this preference.
Line 155
                  1 preference not met.
```

- The clock frequency is 100.000 MHz (10.000 ns period).
- The feedback compensation of 0.097 ns, shown in line 121, is the delay of the PLL (actually only a portion of it, since the internal feedback path is faster than the MCLK and NCLK outputs).
- The clock-to-out delay of 11.657 ns, shown in line 122, exceeds (fails) the specified 7.000 ns requirement.

Case II: PLL With External Feedback From MCLK

Figure 3 illustrates the same circuit as Figure 1, but with the PLL's FB input driven by the output of the clock tree (i.e., the PLL's FB input is just another load on the clock tree). In this case, the PLL nulls out the delay through the PLL [C to D], as well as the clock tree itself [D to EX]. This represents the best that can be achieved by direct nulling, since the PLL can only null out delay that is injected after the PLL's input ports. Figure 4 shows the actual timing from a Trace run. Table 2 correlates the paths in Figure 3 with the delays in Figure 4.

IMPORTANT: refer to item #4 under the section Tips For Successful PLL Usage for information on ensuring that the correct delay is nulled out.

Figure 3. Clock Tree with PLL, PLL Nulled Out

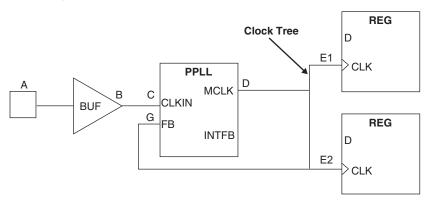


Table 2. Correlation of Schematic and Trace Report

Path in Figure 3	Line in Figure 4	Delay
A to B	Line 230	1.480 ns
B to C	Line 231	1.730 ns
C to D	Line 232	0.385 ns
D to EX	Line 233	2.863 ns
C to D	Line 247	0.385 ns
D to G	Line 248	2.878 ns

Figure 4. PLL with External Feedback from MCLK

Case II: Trace Report, PLL with External Feedback from MCLK (Refer to Figure 3)

```
Preference: CLOCK TO OUT PORT "d out" 7.000000 ns CLKNET "clk c";
                                1 item scored, 1 timing error detected.
Line 205
                   Error: The following path exceeds requirements by 1.491ns
                    Logical Details: Cell type Pin type
                                                                Cell name (clock net +/-)
I ine 210
                                      IO-FF Out Q
                                                                 d out 0io (from mclk +)
                       Source:
                      Destination:
                                      Port
                                                 Pad
                                                                 d out
                      Data Path Delay: 5.296ns (100.0% logic, 0.0% route), 1 logic levels.
Line 215
                      Clock Path Delay: 6.458ns (28.9% logic, 71.1% route), 2 logic levels.
                    Constraint Details:
Line 220
                          6.458ns delay clk to d_out less
                          3.263ns feedback compensation
                          5.296ns delay d_out to d_out (totaling 8.491ns) exceeds
                          7.000ns offset clk to d_out by 1.491ns
Line 225
                   Physical Path Details:
                         Clock path clk to d_out:
                                       Delay (ns) Site Resou.
1.480 C6.PAD to C6.INDD clk
1.730 C6.INDD to ULPPLL.CLKIN clk_c
                               Fanout Delay (ns)
Line 230
                    IN DEL
                               ---
                    ROUTE
                    MCLK DEL
                                ---
                                      0.385 ULPPLL.CLKIN to ULPPLL.MCLK pll_macro_inst/pll_macro_0_0
                    ROUTE
                                       2.863
                                               ULPPLL.MCLK to
                                                                       E8.SC mclk
Line 235
                                        6.458 (28.9% logic, 71.1% route), 2 logic levels.
                         Data path d out to d out:
                                                          Site
                             Fanout Delay (ns)
                      Name
                                                                              Resource
                                                     E8.SC to
Line 240
                                                                      E8.PAD d out (from mclk)
                                       5.296
                                        5.296 (100.0% logic, 0.0% route), 1 logic levels.
                         Feedback path:
Line 245
                                              (ns) Site Resource
ULPPLL.CLKIN to ULPPLL.MCLK pll_macro_inst/pll_macro_0_0
ULPPLL.FB mclk
                               Fanout Delay (ns)
                      Name
                                       0.385
                    MCLK DEL
                                     2.878
                    ROUTE
Line 250
                                               (11.8% logic, 88.2% route), 1 logic levels.
                   Warning: 8.491ns is the minimum offset for this preference.
Line 255
                   1 preference not met.
```

- The clock frequency is 100.000 MHz (10.000 ns period).
- The feedback compensation of 3.263 ns, shown in line 221, is the delay from the input of the PLL to the outputs of the clock tree.
- The clock-to-out delay of 8.491 ns, shown in line 222, exceeds (fails) the specified 7.000 ns requirement.

Case III: PLL With External Feedback Through a PIO

It is possible to achieve a closer approximation to the goal of nulling out the entire clock tree than was achieved in Case II.

Figure 5 illustrates a technique for accomplishing this. Here, the PLL's FB input is driven by a buffer that is in turn driven by the clock tree. The key assumption is that the buffer's delay [E3 to F] plus routing [F to G] approximates the combined delay of the clock's input buffer [A to B] and associated routing [B to C]. Thus, when the PLL nulls out [C to D], [D to E3], [E3 to F] and [F to G], it is approximately the same as nulling out the entire clock tree [A to B], [B to C], [C to D] and [D to EX]. Figure 6 shows the actual timing from a Trace run. Table 3 correlates the paths in Figure 5 with the delays in Figure 6.

Figure 5. Clock Tree with PLL, Clock Tree Nulled Out

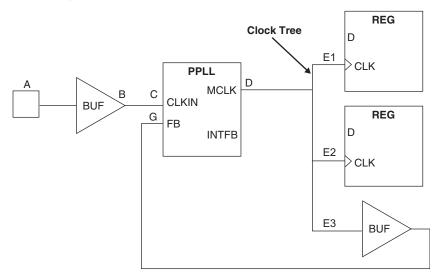


Table 3. Correlation of Schematic and Trace Report

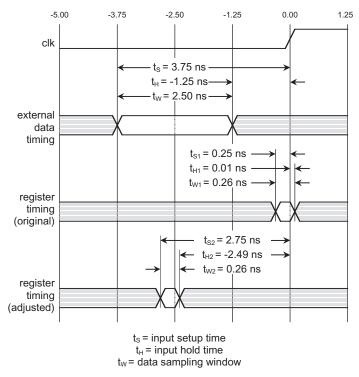
Path in Figure 5	Line in Figure 6	Delay
A to B	Line 330	1.480 ns
B to C	Line 331	1.730 ns
C to D	Line 332	0.385 ns
D to E1	Line 333	2.891 ns
C to D	Line 347	0.385 ns
D to E3	Line 348	1.700 ns
E3 to F	Line 349	0.312 ns
F to G	Line 350	1.273 ns

Figure 6. PLL with External Feedback through a PIO

Case III Trace Report, PLL with External Feedback from Clock Tree Through a Buffer (Refer to Figure 5)

```
Line 301
                    Preference: CLOCK TO OUT PORT "d out" 7.000000 ns CLKNET "clk c";
                                1 item scored, 1 timing error detected.
Line 305
                    Error: The following path exceeds requirements by 1.112ns
                    Logical Details: Cell type Pin type
                                                                 Cell name (clock net +/-)
Line 310
                                       IO-FF Out Q
                                                                  d out 0io (from mclk +)
                       Destination: Port Pad
                                                                  d out
                       Data Path Delay: 5.296ns (100.0% logic, 0.0% route), 1 logic levels.
Line 315
                       Clock Path Delay: 6.486ns (28.8% logic, 71.2% route), 2 logic levels.
                     Constraint Details:
Line 320
                          6.486ns delay clk to d out less
                          3.670ns feedback compensation
                          5.296ns delay d_out to d_out (totaling 8.112ns) exceeds
                          7.000ns offset clk to d out by 1.112ns
Line 325
                   Physical Path Details:
                          Clock path clk to d out:
                                        Delay (ns) Site Resou

1.480 C6.PAD to C6.INDD clk

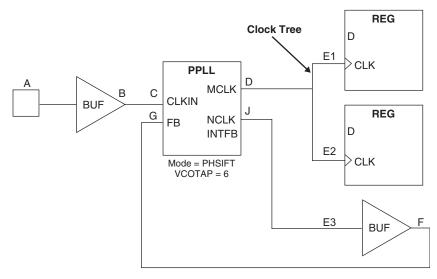

1.730 C6.INDD to ULPPLL.CLKIN clk_c
                      Name
                             Fanout Delay (ns)
                                                                                Resource
Line 330
                    IN DEL
                    ROUTE
                                2.
                    MCLK DEL
                                ---
                                       0.385 ULPPLL.CLKIN to ULPPLL.MCLK pll_macro_inst/pll_macro_0_0
                                        2.891
                                                 ULPPLL.MCLK to
                                                                          D6.SC mclk
                    ROUTE
Line 335
                                         6.486 (28.8% logic, 71.2% route), 2 logic levels.
                          Data path d_out to d_out:
                                                        Site
                       Name
                              Fanout Delay (ns)
                                                                                Resource
                                                      D6.SC to
Line 340
                   OUTREGSL D ---
                                        5.296
                                                                       D6.PAD d out (from mclk)
                                         5.296 (100.0% logic, 0.0% route), 1 logic levels.
                          Feedback path:
Line 345
                               Fanout Delay (ns) Site Resource
--- 0.385 ULPPLL.CLKIN to ULPPLL.MCLK pll_macro_inst/pll_macro_0_0
2 1.700 ULPPLL.MCLK to SLIC_R4C2.SINO mclk
                       Name
                               Fanout Delay (ns)
                    MCLK DEL
                    ROUTE
                    BUF DEL
                                        0.312 SLIC_R4C2.SINO to LIC_R4C2.SOUTO SLIC_0
Line 350
                    ROUTE
                                 1
                                        1.273 LIC R4C2.SOUTO to
                                                                      ULPPLL.FB mclk d
                                        3.670 (19.0% logic, 81.0% route), 2 logic levels.
                    Warning: 8.112ns is the minimum offset for this preference.
Line 355
Line 357
                    1 preference not met.
```

- The clock frequency is 100.000 MHz (10.000 ns period).
- The feedback compensation of 3.670 ns, shown in line 321, is the delay from the input to the PLL to the outputs of the clock tree, plus the delay to and through a tristate buffer, which altogether approximates the total delay from the clock input pin to the output of the clock tree.
- The clock-to-out delay of 8.112 ns, shown in line 322, exceeds (fails) the specified 7.000 ns requirement.

Solution #2: Adjusting input setup and hold times to match external constraints

Frequently, a designer will find that an external timing specification will allow for a generous data sampling window ($t_W = t_S + t_H = i$ nput setup time + input hold time) but that one of the two components, either the setup or hold time, is too small to achieve. Figure 7 illustrates an example of this. Here, the external specification defines the clock frequency to be 100 MHz, the input setup time to be 3.75 ns, and the input hold time to be -1.25 ns (a negative hold time means that the data sampling window ends before its corresponding clock edge occurs). Thus the sampling window is large ($t_W = t_S + t_H = (3.75 \text{ ns}) + (-1.25 \text{ ns}) = (2.50 \text{ ns})$), larger than the sampling window for a typical ORCA Series 4 register (for our example, $t_W = t_S + t_H = (0.25 \text{ ns}) + (0.01 \text{ ns}) = (0.26 \text{ ns})$). Nevertheless, the external specification can't be met, because the register's sampling window does not fall inside the sampling window of the specification. Here, a PLL can be employed to shift the clock edge the register sees, so that the incoming data covers the register's sampling window.

In this case, we need to move the clock tree output earlier by approximately two nanoseconds, so that it will transition in the middle of the data. This shift is shown in the bottom two traces of Figure 7 as the effective shift in the data sampling window at the device's pin interface. Note that after the shift, the register's sampling window is comfortably inside the external specification's sampling window.


There are two methods that can be employed to shift the clock. The first is to adjust the delay that exists in the feedback path to the PLL, as was done in the previous section. As delay is inserted in the feedback path, the result is that the clock output of the clock tree shifts earlier in time. This will cause a shift that is not dependent on clock frequency, but is dependent on device propagation delay characteristics. As such, it will vary with supply voltage, device temperature and speed grade. This was beneficial in the previous example, since it caused the shift to track with the delay that it was nulling. In this example, the desired shift is a fixed 2.50 ns; therefore we will find the second method more appropriate.

The second method is to shift the clock using the PLL's phase shift mode. Here, the shift is specified as a fraction of a clock period. The PLL will continuously and dynamically adjust for variables such as supply voltage, device temperature and speed grade.

For our example, we will use the circuit of Figure 8, which is a modification of the circuit in Figure 5. The modification is necessary because, if the phase-shifted output of MCLK were fed back, the phase adjustment would be nulled out. The circuit in Figure 8 feeds back the NCLK output of the PLL, which is not phase-shifted in PHSIFT Mode (caution: both outputs are phase-shifted in DELAY Mode). To determine the phase adjustment required, the desired shift (2 ns) is divided by the period of the 100 MHz clock (10 ns), resulting in a required phase shift of 1/4 of a period (VCOTAP = 6).

We need to shift the clock earlier by 1/4 period (90°), but the phase shifts that are listed for the PLL shift the output later. Therefore, the specified phase shift would actually be 3/4 period (360° - 90° = 270°). Refer to technical note number TN1014, *ORCA Series 4 FPGA PLL Elements* for information on using the PLL_PHASE_BACK attribute in the preference files in this situation.

Figure 8. Clock Tree with PLL, Delay and Phase Adjusted

Figure 9. PLL Phase Adjusted by +315

Case IV: Trace Report, PLL with External Feedback from NCLK through a Buffer (Refer to Figure 8)

```
I ine 401
                     Preference: CLOCK TO OUT PORT "d out" 7.000000 ns CLKNET "clk c";
                                1 item scored, 1 timing error detected.
Line 405
                    Error: The following path exceeds requirements by 9.902ns
                     Logical Details: Cell type Pin type
                                                                    Cell name (clock net +/-)
Line 410
                        Source:
                                        IO-FF Out Q
                                                                   d_out_0io (from mclk +)
                        Destination:
                                        Port
                                                   Pad
                                                                   d out
                        Data Path Delay: 5.296ns (100.0% logic, 0.0% route), 1 logic levels.
Line 415
                        Clock Path Delay: 14.823ns (69.0% logic, 31.0% route), 2 logic levels.
                     Constraint Details:
Line 420
                          14.823ns delay clk to d out less
                           3.217ns feedback compensation
                           5.296 ns delay d_out to d_out (totaling 16.902 ns) exceeds
                           7.000ns offset clk to d out by 9.902ns
Line 425
                    Physical Path Details:
                           Clock path clk to d out:
                       Name
                                Fanout.
                                         Delay (ns) Site Resource

1.480 C6.PAD to C6.INDD clk

1.730 C6.INDD to ULPPLL.CLKIN clk_c

8.750 ULPPLL.CLKIN to ULPPLL.MCLK pll_macro_inst/pll_macro_0_0
                                         Delay (ns)
                                                            Site
                                                                                  Resource
                                 ---
Line 430
                     IN DEL
                     ROUTE
                                         8.750 ULPPLL.CLKIN to
                     MCLK DEL
                    ROUTE
                                 1
                                        2.863 ULPPLL.MCLK to
                                                                            E8.SC mclk
Line 435
                                       14.823 (69.0% logic, 31.0% route), 2 logic levels.
                           Data path d out to d out:
                                                       Site
E8.SC to
                       Name
                               Fanout
                                         Delay (ns)
                                                                                  Resource
                                                                         E8.PAD d_out (from mclk)
I ine 440
                    OUTREGSL D ---
                                         5.296
                                          5.296 (100.0% logic, 0.0% route), 1 logic levels.
                          Feedback path:
Line 445
                                Fanout Delay (ns)
                        Name
                                                              Site
                                                                                  Resource
                                 ---
                                         0.000 ULPPLL.CLKIN to ULPPLL.NCLK pll r
1.632 ULPPLL.NCLK to SLIC_R4C2.SINO nclk
                    NCLK_DEL
                                                                     ULPPLL.NCLK pll_macro_inst/pll_macro_0_0
                                 1
                     ROUTE
                                        0.312 SLIC_R4C2.SIN0 to LIC_R4C2.SOUT0 SLIC_0
                     BUF DEL
Line 450
                    ROUTE
                                 1
                                        1.273 LIC_R4C2.SOUT0 to
                                                                       ULPPLL.FB nclk d
                                         3.217 (9.7% logic, 90.3% route), 2 logic levels.
                    Warning: 16.902ns is the minimum offset for this preference.
Line 455
Line 457
                    1 preference not met.
```

- The clock frequency is 100.000 MHz (10.000 ns period).
- The feedback compensation of 3.217 ns, shown in line 421, is the delay from the input to the PLL, out the PLL's NCLK output, and through a tristate buffer, which altogether approximates the total delay from the clock input pin to the output of the clock tree.
- The clock-to-out delay of 16.902 ns, shown in line 422, exceeds (fails) the specified 7.000 ns requirement.
- The 14.823 ns (delay from clk to d_out) shown in line 420 is taken directly from line 435, since there is no PLL_PHASE_BACK attribute on this CLOCK_TO_OUT preference (compare with the same lines in Figure 11).

Solution #3: Matching clock-to-out of driver device with input setup of receiver device

Another common design problem involves the need to provide maximum time for a signal to pass from its driver device to its receiver. If the clock-to-out time t_P can be reduced, the impact on inter-device delay can be minimized. Once again, the PLL can perform this job.

Just as the PLL "borrowed" from the input hold time in order to provide greater input setup time in the previous example, here a PLL allows the driver device to "borrow" from the input setup time of its output register in order to reduce to on that register's output.

Refer to Figure 10. If the delay from C to D is large so that the input setup time at D is not met, but the delay from A to B is small so that the input setup time at B is met with time to spare, the PLL in the driving device can be configured to shift the clock at F earlier with respect to clocks at E and G. As in the above examples, the clock can be shifted earlier either by adding delay to the PLL's FB input or by using the PLL in Phase Shift mode. Once again, the shifts are negative, so a shift of 1/8 of a clock phase (45°) requires a VCOTAP setting of 7 (315°).

This clock adjustment technique is illustrated in the Trace runs in Fig X9 (no PLL_PHASE_BACK attribute and therefore +315° phase shift) and Figure 11 (PLL_PHASE_BACK attribute and therefore -45° phase shift). Table 2 correlates the paths in Figure 8 with the delays in Figure 9 and Figure 11.

Figure 10. Phase Adjustment to Compensate for Large Path Delays

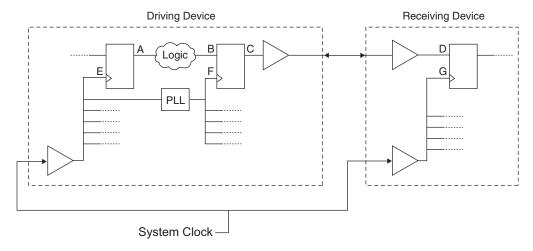


Table 4. Correlation of Schematic and Trace Reports

Path in Figure 8	Line in Figure 9	Line in Figure 11	Delay
A to B	Line 430	Line 530	1.480 ns
B to C	Line 431	Line 531	1.730 ns
C to D	Line 432	Line 532	8.750 ns
D to E	Line 433	Line 533	2.863 ns
C to J	Line 447	Line 547	0.000 ns
J to E3	Line 448	Line 548	1.632 ns
E3 to F	Line 449	Line 549	0.312 ns
F to G	Line 450	Line 550	1.273 ns

Figure 11. PLL Phase Adjusted by -45

Case V: Trace Report, PLL with External Feedback from NCLK through a Buffer (Refer to Figure 8)

```
Line 501
                     Preference: CLOCK_TO_OUT FORT "d_out" 7.000000 ns CLKNET "clk_c" PLL_PHASE_BACK; 1 item scored, 0 timing errors detected.
Line 505
                     Passed: The following path meets requirements by 0.098ns
                      Logical Details: Cell type Pin type
                                                                     Cell name (clock net +/-)
Line 510
                                          IO-FF Out Q
                                                                     d_out_0io (from mclk +)
                                                     Pad
                        Destination: Port
                                                                    d out
                        Data Path Delay: 5.296ns (100.0% logic, 0.0% route), 1 logic levels.
Line 515
                        Clock Path Delay: 14.823ns (69.0% logic, 31.0% route), 2 logic levels.
                      Constraint Details:
Line 520
                            4.823ns delay clk to d out less
                            3.217ns feedback compensation
                            5.296ns delay d_out to d_out (totaling 6.902ns) meets 7.000ns offset clk to d out by 0.098ns
Line 525
                     Physical Path Details:
                            Clock path clk to d_out:
                                 Fanout
                                           Delay (ns)
Line 530
                     IN DEL
                                           1.480
                                                        C6.PAD to
C6.INDD to
                                                                            C6.INDD clk
                                   2
                                                                      ULPPLL.CLKIN clk c
                     ROUTE
                                           1.730
                                           8.750
                                                                       ULPPLL.MCLK pll_macro_inst/pll_macro_0_0
                     MCLK DEL
                                                   ULPPLL.CLKIN to
                     ROUTE
                                   1
                                          2.863
                                                    ULPPLL.MCLK to
                                                                              E8.SC mclk
Line 535
                                          14.823 (69.0% logic, 31.0% route), 2 logic levels.
                            Data path d_out to d_out:
                                 Fanout Delay (ns)
                                                                                     Resource
Line 540
                     OUTREGSL_D
                                                           E8.SC to
                                                                            E8.PAD d_out (from mclk)
                                           5.296 (100.0% logic, 0.0% route), 1 logic levels.
                           Feedback path:
                                          0.000 ULPPLL.CLKIN to
1.632 ULPPLI, NCTV -
                                                                Site
                        Name
                                 Fanout
                     NCLK DEL
                                                                       ULPPLL.NCLK pll_macro_inst/pll_macro_0_0
                                   1
                     ROUTE
                                                    ULPPLL.NCLK to SLIC_R4C2.SIN0 nclk
                                           0.312 SLIC_R4C2.SINO to LIC_R4C2.SOUTO SLIC_O
1.273 LIC_R4C2.SOUTO to ULPPLL.FB nclk_d
                     BUF DEL
Line 550
                     ROUTE
                                          3.217 (9.7% logic, 90.3% route), 2 logic levels.
                     Report: 6.902ns is the minimum offset for this preference.
Line 555
Line 557
                     All preferences were met.
```

- The clock frequency is 100.000 MHz (10.000 ns period).
- The feedback compensation of 3.217 ns, shown in line 521, is the delay from the input to the PLL, out the PLL's NCLK output, and through a tristate buffer, which altogether approximates the total delay from the clock input pin to the output of the clock tree.
- The clock-to-out delay of 6.902 ns, shown in line 522, meets (passes) the specified 7.000 ns requirement.
- The 4.823 ns (delay from clk to d_out) shown in line 520 is equal to the 14.823 ns from line 535 minus the 10.000 ns clock period, since there is a PLL_PHASE_BACK attribute on this CLOCK_TO_OUT preference (compare with the same lines in Figure 9).

Summary

Table 5 summarizes the five cases examined, and lists the effects of the configurations on the feedback compensation and clock-to-out delay.

Table 5. Summary of Cases I Through V

Case	Schematic	Trace Report	Description	Feedback Compensation	Clock-to-Out Delay
I	Fig X1	Figure 2	PLL with internal feedback	0.097	11.657
П	Fig X3	Figure 4	PLL with clock tree feedback	3.263	8.491
III	Fig X5	Figure 6	Case 2, with added buffer ¹	3.670	8.112
IV	Fig X8	Figure 9	Case 3, with 315° phase shift ²	3.217	16.902
V	Fig X8	Figure 11	Case 3, with -45° phase shift ²	3.217	6.902

- 1. Case III feeds the output of the clock tree through a buffer to the PLL's FB input.
- 2. Cases IV and V feed the PLL's NCLK output through a buffer to the PLL's FB input (the clock tree is fed by the PLL's MCLK output). This is done because, if the actual clock tree were used, the phase shift would be nulled out.

Tips For Successful PLL Usage:

- 1. Always use the ispLEVER Module/IP Manager HDL generator to produce the code for a PLL. The ispLEVER Module/IP Manager generator will ensure that timing requirements are met and calculate the proper values for all parameters.
- 2. The ispLEVER Module/IP Manager HDL generator cannot presently generate designs that utilize external feedback. To generate an externally linked PLL, use ispLEVER Module/IP Manager to generate the equivalent design with internal feedback, and then modify the output to utilize external feedback. The necessary modifications involve adding ports or logic to the module for FB (and INTFB if needed), and connecting them to the corresponding ports on the PPLL element that is instantiated within the module. Reference #2 provides additional information to assist in this modification.
- 3. When using a PLL to alter frequency, keep in mind that the frequencies at all points in the PLL must remain within the PLL's range of operation. This means that as well as the input and output signals, the feedback and some internal signals must also remain in range. Once again, ispLEVER Module/IP Manager will ensure that these requirements are met.
- 4. When nulling out the clock tree by feeding the clock back into the PPLL's FB input through a buffer, be aware that ispLEVER Project Navigator will utilize any available copy of the clock net to feed the buffer, not being careful to minimize skew, since it will not recognize the input to the buffer as a clock load. Therefore, after automatic routing is complete, check the buffer's input to make sure that it is connected as a "leaf" on the clock tree, similar to the way any other clock load is connected. Otherwise, the delay of the clock tree will not be properly represented.
- 5. If clocks are shifted in phase relation to each other, it may be necessary to place multi-cycle constraints on the clocks in order to properly model the intended behavior.
- 6. Warning: exercise extreme caution if you are using the PLL to insert large phase shifts into your design in order to accommodate paths exhibiting large delay. Bear in mind that there is a large variability in delay values, as caused by voltage, temperature and device speed variation. If a path contains a worst-case (greatest) delay of more that one clock period, it is still very likely that the best-case (least) delay for that path is very small. If the receiver's clock is shifted later, the signal may shortpath ("shoot-through") and fail to operate over full range.
- 7. The TRACE program in ispLEVER Project Navigator can be used to verify that input hold time requirements are being met; however, a separate trace run must be made that specifies the "-hld" option, or "check hold times" from the ispLEVER Project Navigator. This run must be in addition to the regular run, since this one will only check hold times (shortpaths) and not setup times (longpaths). Place preferences on all affected inputs, using one of the following formats:

```
INPUT_SETUP port_name time_spec HOLD time_spec CLK_NET clk_netname ;
INPUT port_name SETUP time_spec HOLD time_spec CLK_NET clk_netname ;
```

Be sure to evaluate your hold-time requirements early in the design cycle.

8. When using a PPLL for phase shifting, the phase-shifted output cannot be used as the PPLL's feedback input, since the PPLL would then dutifully null out the inserted phase shift. Either feed back the internal feedback output (INTFB), or, if additional delay compensation is desired, use the output NCLCK to drive a delay network and then drive the PPLL's FB input with the output of that delay network.

References

or

- 1. ORCA Series 4 FPGAs Data Sheet
- 2. ORCA Series 4 FPGA PLL Elements Technical Note (technical note number TN1014)

Technical Support Assistance

Hotline: 1-800-LATTICE (Domestic)

1-408-826-6002 (International)

e-mail: techsupport@latticesemi.com