

www.latticesemi.com

1

tn1111_01.0

May 2006 Technical Note TN1111

© 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction

The following user’s guide describes the Lattice Tri-Speed Ethernet Media Access Controller (TSMAC) IP demo.
The demo shows the capability of the TSMAC core to function in a real network environment. The demo is
designed to be simple and easy to use and requires no test equipment, lengthy setup or complex explanation. An
application familiar to everyone, and practically synonymous with Ethernet and networking, is surfing the web. This
demo uses a web server, entirely contained in a LatticeXP™ FPGA, to demonstrate the TSMAC IP core. This not
only demonstrates the TSMAC IP, but it also shows the ability to embed a CPU in a Lattice FPGA and have an
entire system in a chip.

The demo runs on a LatticeXP Advanced Evaluation Board connected to another host computer (demo PC) on the
same network (or via a cross-over cable). The client demo PC will connect to the LatticeXP Advanced Evaluation
Board, over a standard 100 Base-T network, using a web browser. The set-up is depicted in Figure 1.

Figure 1. Tri-Speed Ethernet MAC Demo Setup

This simple demo shows the ability of the TSMAC to be configured with a MAC address, receive 802.3 frames
(both physical and broadcast), filter these packets and pass them to higher protocol software. It also shows the
TSMAC receiving IP packets from higher layer software and transmitting them over the Ethernet.

TSMAC features demonstrated include:

• Real-world 802.3 Ethernet frames received and transmitted

• Accepts broadcast messages (DEST_MAC = ff:ff:ff:ff:ff:ff)

• Accepts packets addressed to its physical MAC address

• Error counters and statistics

Application Space

This demo, while not itself a truly useful application, could be used as the basis for real applications such as those
described below.

CPU
(Ping, TCP/IP, Web)

ctrl

Tri-Speed MAC

TX FIFO RX FIFO

PHYLatticeXP
Evaluation

Board

LatticeXP

RJ-45 Demo PC

LatticeXP Tri-Speed
Ethernet MAC Demo

2

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

TSMAC Applications

• Control plane interface for low-end, networked devices (10/100 Base-T embedded systems)

• Packet validation and encryption functions in switches and firewalls

• Multiple TSMACs could be used to form a gigabit Ethernet switching solution. This would require a more powerful
FPGA (LatticeSC™) and the use of external RAM and a powerful control plane processor

LatticeXP Applications

• Networking device – this demo code could be used a basis for constructing a networked device (see
www.openTCP.org or uIP for more information on TCP/IP stack usage considerations in embedded devices)

• Small system solution in an FPGA – this demo shows possibilities for using an 8-bit CPU, EBRs, custom IP and
standard IP to produce a complete system solution in a LatticeXP device

Limitations

The demo is limited in functionality because of the CPU and software resource constraints in the LatticeXP. The
major issue being that EBR memory must hold all program instructions, data, web pages, variables, FIFOs, etc. A
complete, robust TCP/IP stack is therefore not possible to fit in a LatticeXP-10 with 20kB left to the CPU. This would
not be an issue in a larger LatticeXP device, but for this demo the following limitations apply:

• Recommend communication with one client at a time (demo PC)

• Supports a very basic TCP/IP stack with limited error handling, limited gateway support, no buffering or retrans-
mit on collision

• Network configuration hard-coded – IP address, MAC address, gateway, etc.

• No dynamic web content; only hard-coded, static pages are displayed

• 100BaseT full-duplex operation only (no auto-negotiation)

• Expect low throughput, with dropped packets, on a busy network

Background Knowledge

This demo assumes the user is familiar with basic TCP/IP networking concepts and has experience connecting
equipment to networks and basic network trouble shooting skills. In particular, the user should be familiar with IP
addressing, MAC addresses, the Ping utility, using a hub or swapped cable and configuring addresses on a PC.

Installation Guide

The TSMAC LatticeXP demo package is released by Lattice in a zipped file. Simply download the file and unzip it.
The pre-built bitstream is included and must be loaded into the LatticeXP device. Other Lattice tools that may be
needed are ispVM

®

 System software to download the bitstream, and ispLEVER

®

 design tools if any changes to the
design are to be made.

Installation

The LatticeXP TSMAC demo is distributed in a zipped file. Simply unzip the file and the directory structure shown in
Figure 2 will be created.

3

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Figure 2. Demo Directory Structure

•

Demo/

 – Pre-built bitstream and ispVM configuration ready for download into the LatticeXP

•

Docs/

 – User’s guide

•

exe/

 – Windows executable utilities used with bitstream and network parameter changes

•

Hdw/ispLEVER/

 – Project and preference files to synthesize, map, place, route and create the demo bitstream

•

Hdw/Src/

 – The Verilog HDL of the demo design

•

Src/uIP_Z80/

 – The demo application source code: TCP/IP stack, web server, pages, etc.

•

Src/Tools/

 – Source code for Windows applications used in project development

Environment Setup

The default demo bitstream is provided in the Demo/ directory. Nothing needs to be configured to use this default
bitstream. If you plan to change the network parameters of the LatticeXP Advanced Evaluation Board, you will
need to run a setup script to install certain environment variables and update the PATH to find the utilities.

NOTE: ispVM System software and a Lattice ispDOWNLOAD

®

 cable are required to download the bitstream into
the LatticeXP device. Without these two tools, there is no way to load changes made to the demo operations. If you
don’t have an ispDOWNLOAD cable, you can skip the remainder of this section.

ispLEVER is needed to rebuild the bitstream if changes are made to the hardware design or if changes to the soft-
ware (IP parameters) are to be permanently saved in the bitstream. If you do not have ispLEVER installed, you
cannot change the bitstream.

4

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

setup.bat

The setup.bat program, located at the top level of the demo installation, creates the necessary environment vari-
ables and adds the appropriate directories to the search path. This file should be looked at and edited if the tools
(ispVM, ispLEVER) are installed in places other than their default. Once edited to match the system setup, run
setup.bat from a DOS window and then complete all work in that DOS window.

Environment Variables

The following environmental variables are created by setup.bat, or could be manually added to your environment.

•

ISPVM_DIR

 – Path to installation of ispVM System software. By default, this is c:\ispTOOLS\ispvmsystem\

•

ISPVM_DEV

 – If using something other than the USB pod. Default is EzUSB-0

•

ISP_BIN

 – Set to the location of the ispLEVER tools (the directory that holds memedit.exe, bitgen.exe, etc.) This
is usually: c:\ispTOOLS5_1\ispfpga\bin\nt\. The last ‘\’ is required. An alternate method is to specify the location
of the ispLEVER tools in your PATH environment variable

PATH

The PATH environment variable is modified by setup.bat to include access to the utilities used in changing the IP
address in the bitstream and to locate DLLs used when communicating via the ispVM JTAG download cable.

In addition, if the application software is to be recompiled, add the path to the Z80 compiler tools z88dk with the
command.:

C:> set PATH=%PATH%;c:\z88dk\bin

The Demo

The demo includes three separate pieces that together form the complete demonstration:

1. The hardware design – TSMAC IP, other IP, ispLEVER, ispVM
2. The application software – Z80 CPU, TCP/IP stack, web server
3. Network administration – Configuring IP addresses, testing networks, connecting equipment

The simplest way to use the demo is to load the pre-built bitstream from the Demo/ directory into a LatticeXP
device on the evaluation board, and connect to the evaluation board with a hub or swapped cable.

The next easiest method is to change the default IP address of the board and connect it to a real network. This
requires having ispLEVER loaded so the utilities in Demo/ can edit.

A more complex method requires rebuilding the bitstream. This also requires ispLEVER to be installed and the
TSMAC_XP_Hdw project to be loaded and synthesized.

The most complex way to use the demo is to change the application code (web pages, etc.). This requires installing
the Z80 software development kit and other utilities to rebuild the application and embedding the CPU instructions
and data into the EBR contents of the bitstream.

Demo Setup

The client demo PC connects to the LatticeXP Advanced Evaluation Board over a standard 100 Base-T network.
The setup is depicted in the Figure 3.

5

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Figure 3. Connecting the LatticeXP Advanced Evaluation Board to a Network

The demo can be set up in one of two modes. The evaluation board can be connected to a network and accessed
by any computer on this network. Or, the evaluation board can be directly connected to the demo PC using a
swapped network cable or a stand-alone hub. The direct connection provides quicker set-up and does not require a
valid IP address for the evaluation board. The network operation method requires extra work since the LatticeXP
bitstream must be modified with a new IP address, but it does show the TSMAC responding to real network traffic.

The board must have a valid address to communicate with other systems. The board’s bitstream has a built-in
default address of 192.168.33.175.

Direct Connect

To directly connect a PC, such as a laptop, to the evaluation board, a swapped cable or a hub can be used between
the two systems. The PC and the evaluation board are then on their own network. Therefore, the LatticeXP demo
default IP address can be used. The default LatticeXP IP address is 192.168.33.175. The PC must be changed to
an address on the 192.168.33.0 network. Any IP address can be chosen (except .175). The example below shows
192.168.33.153.

WARNING! Do not use this method and also connect to the Lattice network. This may conflict with an exist-
ing machine assigned an IP address at Lattice.

In Windows, changing the PC’s IP address is done through:

Start->Settings-> Network and Dial-up Connections->Local Area Connection->Properties->Internet Protocol
(TCP/IP)->Properties-> Fixed IP address

X
 RJ45 Network Hub Demo PC

LatticeXP Advanced
Evaluation Board 8

6

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Figure 4. Internet Protocol (TCP/IP) Properties Window

You may need to log into your PC using the machine’s domain rather than a network domain login account. This
ensures that you will have the proper permissions to change your network settings. See your network administrator
if you have permission issues.

Installation on a Network

To install the evaluation board on an existing network, it will need a valid IP address for that network. This should be
a fixed IP address on the network. See your network administrator for an address. The IP address then needs to be
programmed into the TCP/IP software running on the embedded CPU. The network’s gateway and net mask must
also be known. (As of this writing, only Class C addresses have been tested, without subnetting - unsure if the
TCP/IP stack supports anything else).

All of the methods that change the board’s IP address requires use of the ispVM tool at a minimum.

Application Change:

The binary application code that executes on the internal CPU has fixed networking parameters in the code. These
values can be inspected and modified using the netchange.exe program.

C:\TSMAC_XP_Z80_REL\Demo>

netchange

netchange <Z80.bin> <Z80.map> [param=val ...]

Change network parameter values in the Z80 binary file ‘Z80.bin’
using ‘Z80.map’ to locate the global variables to be changed.
This is useful to modify the IP address of a TSMAC XP demo board
without recompiling the code. Not specifying parameters to change
causes the existing values to be displayed but not changed.

Network Parameters:
i=dd.dd.dd.dd change IP address

7

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

g=dd.dd.dd.dd change gateway IP address
m=dd.dd.dd.dd change netmask value
e=dd (0-31) modify TSMAC Ethernet address

For example, to change the IP address run:

C:\TSMAC_XP_Z80_REL\Demo>

netchange demo.bin demo.map i=10.0.0.22

Once the network parameters have been set to the correct values in demo.bin, use the download utility to transfer
the executable program into the LatticeXP EBR using the ispVM System software. The LatticeXP device must
already have a valid tsmac_xp_hdw bitstream loaded and running.

C:\TSMAC_XP_Z80_REL\Demo>ispLoad demo.bin
LatticeXP TSMAC Demo CPU Download Program
built: Mar 16 2006 17:07:49
Creating access to the XP via JTAG ispVM
ISPVM_DIR found. Using location: c:\ispTOOLS\ispvmsystem
ISPVM_DEV found. Using: EzUSB-0
. . .

The CPU will reboot after downloading and the new network parameters will be used as long as the device is not
reprogrammed (PROGRAM button, power-cycled or evaluation IP timeout).

To Edit the Bitstream

1. Use the netchange program to modify the application network parameters as described above
2. Run bin2hdw to convert the binary into EBR memory format and move it into the Hdw/ispLEVER/ director.
3. From the Hdw/ispLEVER/ directory, run add_prog.bat and then isp_bitgen.bat
4. Use ispVM System software to load the tsmac_xp_hdw.bit file into the LatticeXP device

To Recompile the Application Source

1. In Src/uIP_Z80/z80/, change the network parameters in uip_opt.h
2. In Src/uIP_Z80/z80/, run makeweb.bat
3. From the Hdw/ispLEVER/ directory, run add_prog.bat and then isp_bitgen.bat
4. Use ispVM System software to load the tsmac_xp_hdw.bit file into the LatticeXP device

Additional Configurations

The proxy server for the web browser must be disabled since the browser will connect directly to the evaluation
board rather than through a proxy server. If your system displays the message shown in Figure 5, follow these
steps in Windows for Internet Explorer to disable the proxy:

Tools->Internet Options->Connections->LAN Settings-> Disable Proxy Server

8

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Figure 5. Message Error Shown if Proxy Server is Enabled

Figure 6. Local Area Network (LAN) Settings Window

Running the Demo

This section guides the user through operating the demo. The network connection method and IP address should
be configured using one of the methods in the previous section. The user should pay attention to the LEDs to
ensure proper operation of the hardware.

Note: The TSMAC IP evaluation core allows operation for one hour. After one hour, the entire board will lock up.
The bitstream will need to be reloaded using ispVM System software, or if programmed into the Flash memory, the
PROGRAM button will need to be pushed.

Visual Indicators

The demo uses the LEDs on the evaluation board to provide visual feedback of the demo operation. An important
indicator of software operation is the steady blinking of LED1. LED8 should be lit once connected to a network,
indicating a 100Mbs Ethernet link is established. When packets are being sent over the network, LED7 will blink.
The 7-Segment display will increment whenever a valid packet is received. LED2 to LED5 will light up depending
on the types of packets received and transmitted.

9

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Discrete LEDs

The eight individual green LEDs at the edge of the board, above the DIP switches, are used to indicate various
conditions. The LEDs are numbered on the board with D1 at the top and D8 at the bottom (PCI fingers). Their func-
tions are:

1. heart beat – Software blinks at every pass through the main loop when looking for packets
2. rx_packet – Set whenever a packet has been received from the TSMAC
3. tx_packet – Set whenever a packet has been sent to the TSMAC
4. ARP – Set whenever an ARP protocol packet has been received
5. Finger – Set whenever a finger protocol packet has been received
6. HTTP – Set whenever an http (web page) protocol packet has been received
7. Link Activity – Hard wired from PHY to indicate network activity
8. LINK Good – Hard wired from PHY to indicate a good 100Mbit link is detected

The software controlled LEDs have a two-second persistence.

Segment Display

The display indicates the number of packets received by the software from the TSMAC. The decimal point will light
if an error condition has been detected, such as a CRC error, FIFO overflow errors, etc. This display is completely
controlled by the software.

RJ-45 Jack

The yellow LED on the rear of the RJ-45 jack (closest to the PCI fingers) indicates network activity. This LED
appears to be controlled by the PHY and/or connector. It is not controlled by the MAC or software, but works only
after the PHY has been configured. This is a good indicator of traffic on the network.

Ping the Board

The evaluation board responds to standard network ping commands from a host computer (demo PC). Ping shows
network connectivity to the evaluation board, which indicates a properly functioning TSMAC. The first step should
always be to ping the board to ensure network connectivity.

If you cannot ping the board, the other demos will not work. Ping must work before continuing.

Figure 7. Ping the Board

10

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Demo Web Pages

The software running on the CPU inside the LatticeXP device contains a web server task that will serve pages to
any computer that connects to it. The user can view the following pages in their web browser (remember to disable
any use of a proxy, and choose to connect directly to the Internet). Open Internet Explorer and enter the board’s IP
address. The home page introduces the demo.

Figure 8. LatticeXP TSMAC Demo Home Page

There are two additional links at the bottom of the page. They open the pages shown in Figures 9 and 10.

11

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Figure 9. LatticeXP Page

12

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Figure 10. TSMAC IP Page

TSMAC Statistics

Use the TCP protocol Finger to return statistics and configuration settings from the board.

The demo PC issues the following finger commands and the operating information is returned and displayed for the
user. There are two finger command options:

• finger stats@<ip>

• finger mac@<ip>

13

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Figure 11. Finger for Statistics and Configuration Settings

The stats option displays network configuration and statistics as seen by the TCP/IP and application software.

• The MAC address is the 6-byte address written into the TSMAC registers by the initialization software

• The IP address is the address the board is using

• Rx pkts is the 16-bit count of good Ethernet packets read from the Rx FIFO by the driver software

• Rx errs is the 16-bit count of software errors encountered during reading a packet, such as bad length (>1024),
no EOF, and other hardware/driver interactions

• Tx pkts is the 16-bit count of Ethernet packets written into the Tx FIFO by the driver software

• Tx errs is the 16-bit count of software errors encountered during writing a packet, such as bad length (>1024) or
if the FIFO still had a packet in it (only one allowed at a time in this demo)

The mac option displays TSMAC statistics, as counted by hardware signals from the core, such as mac_rx_eof,
mac_rx_error, mac_tx_done, etc.

• Rx pkts is the 16-bit count of good Ethernet packets read from the Rx FIFO by the driver software

• Rx drop is the 16-bit count of packets dropped by the TSMAC because the rx FIFO had a packet and the
mac_ignore_pkt signal was asserted. This is due to slow software and the demo allowing only one packet in the
FIFO at a time

• Rx CRC is the 16-bit count of packets detected to have a bad CRC and dropped by the TSMAC

• Tx pkts is the 16-bit count of Ethernet packets read from the Tx FIFO by the TSMAC

• Tx errs is the 16-bit count of errors encountered during transmitting a packet, such as collisions or FIFO under-
run

See the

Tri-Speed Ethernet Media Access Controller User’s Guide

 for more details on error statistics reported by
the TSMAC.

14

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Design Details

This section provides technical information on the demo system design. The supporting IP around the TSMAC core
is described in detail. The software design is also described.

Hardware

The following block diagram shows a high-level view of the IP blocks within the LatticeXP device and the external
PHY device.

Figure 12. Block Diagram of IP Blocks Contained in the LatticeXP

IP Interconnection

The IP modules are interconnected using the Wishbone bus and CPM Master and Slave interfaces. The Wishbone
bus is an open standard that defines a microprocessor bus suitable for use in FPGAs. The demo provides a proof-
of-concept implementation of the bus, using the proposed CPM interface to bridge Lattice IP to the Wishbone bus.

LatticeXP FPGA

TSMAC

PHY

Tx
FIFO

Ctrl

Regs
Rx

FIFO

CPU Memory GPIO Regs
LEDs

DIP sw

JTAG
DebugispVM

15

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Figure 13. Bridging IP with a Wishbone Bus Block Diagram

The Wishbone bus specification can be found at www.opencores.org. The CPM is a method used in this design to
connect Wishbone Masters and Wishbone Slaves to the same bus.

TSMAC Details

Details of the Tri-Speed MAC IP core can be found in the

Tri-Speed Ethernet Media Access Controller User’s Guide

located on the Lattice web site at www.latticesemi.com.

The TSMAC host interface signals are connected to the Wishbone bus via a CPM.slave module. The TSMAC inter-
nal registers are then accessible to the CPU. The TSMAC is located at address 0x8200 on the Wishbone bus. The
following TSMAC registers are accessed by the CPU:

Table 1. TSMAC Register Map

Register Description Mnemonic Offset POR Value

Mode register MODE 00H - 01H 0000H

Transmit and Receive Control register TX_RX_CTL 02H - 03H 0000H

Maximum Packet Size register MAX_PKT_SIZE 04H - 05H 05EEH

Inter Packet Gap register IPG_VAL 08H - 09H 0048H

Tri-Speed MAC Address register 0 MAC_ADDR_0 0AH - 0BH 0000H

Tri-Speed MAC Address register 1 MAC_ADDR_1 0CH - 0DH 0000H

Tri-Speed MAC Address register 2 MAC_ADDR_2 0EH - 0FH 0000H

Transmit and Receive Status TX_RX_STS 12H - 13H 0000H

GMII Management Interface Control register GMII_MNG_CTL 14H - 15H 0000H

GMII Management Data register GMII_MNG_DAT 16H - 17H 0000H

VLAN Tag Length/type register VLAN_TAG 32H - 33H 0000H

Multicast_table_0 MLT_TAB_0 22H - 23H 0000H

Multicast_table_1 MLT_TAB_1 24H - 25H 0000H

Multicast_table_2 MLT_TAB_2 26H - 27H 0000H

Multicast_table_3 MLT_TAB_3 28H - 29H 0000H

Multicast_table_4 MLT_TAB_4 2AH - 2BH 0000H

Multicast_table_5 MLT_TAB_5 2CH - 2DH 0000H

Multicast_table_6 MLT_TAB_6 2EH - 2FH 0000H

Multicast_table_7 MLT_TAB_7 30H - 31H 0000H

Pause_opcode PAUS_OP 34H - 35H 0080H

CPU
IP

CPM.m

Arbiter

CPM.m

CPM
Debug

Memory

CPM.s

GPIO

CPM.s

FIFO &
Ctrl

CPM.s

TSMAC

CPM.s

ispVM

Wishbone
System Bus

IRQ

JTAG

16

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

The TSMAC and PHY are configured by the demo software to operate only in the following modes:

• 100 Base-T Mode (no auto-negotiation)

• Full duplex (no need to run half-duplex)

• Flow control enabled (not used)

• Strip preamble, SFD on received packets

• Keep CRC in received buffer

• MAX_FRAME_SIZE = 1024 bytes (due to limited EBR memory)

• Disable receive short frames

• Disable promiscuous mode

The following TSMAC registers (and PHY registers) are written by the software to configure the above modes:

// put TSMAC in IDLE state (disable Tx & Rx)
TSMAC->mode.reg8.lo = 0x00; // everything disabled

// TSMAC Configuration
TSMAC->tx_rx_ctl.reg8.lo= 0x88;// full-duplex, no multicast, pause OK, keep CRC, no promiscous
TSMAC->tx_rx_ctl.reg8.hi= 0x00;// no frames shorter than 64 bytes
TSMAC->max_pkt_size.reg8.lo = (UIP_BUFSIZE & 0xff); // max FIFO space in this demo
TSMAC->max_pkt_size.reg8.hi = ((UIP_BUFSIZE>>8) & 0xff);
TSMAC->ipg_val.reg8.lo = 0x08;// default Inter-packet gap in units of bit time
TSMAC->mac_addr_0.reg8.lo = uip_ethaddr.addr[1];// Fixed MAC address defined in uipopt.h
TSMAC->mac_addr_0.reg8.hi = uip_ethaddr.addr[0]; // byte order defined in TSMAC users guide.
TSMAC->mac_addr_1.reg8.lo = uip_ethaddr.addr[3]; // Its not straight-forward.
TSMAC->mac_addr_1.reg8.hi = uip_ethaddr.addr[2];
TSMAC->mac_addr_2.reg8.lo = uip_ethaddr.addr[5];
TSMAC->mac_addr_2.reg8.hi = uip_ethaddr.addr[4];

// Setup the National 83865 PHY using the GMII Ctrl and Data registers
PHY_write(0, 0x2100); // 100 MBit mode, full duplex, no auto-negotiation

FIFO Interface IP

The FIFO Interface IP connects the TSMAC packet data to the CPU bus. The FIFOs provide the storage for IP
packets received and processed by the TSMAC, destined for the application. They also provide storage for IP pack-
ets generated by the application, ready for transmission by the TSMAC. This section details the hardware design
and the functional operation. The TSMAC is located at address 0x8200 on the Wishbone bus.

Receive Design

Figure 14 diagrams the components, data flow and control flow for receiving an IP packet from the TSMAC and
making it available to the CPU.

17

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Figure 14. Receive Block Diagram

Module Descriptions:

 The TSMAC module receives the Ethernet frame and writes the received bytes directly into
the Rx FIFO. Only the receive signals of the TSMAC are shown in the diagram above. These signals control clock-
ing received bytes into the FIFO and provide information about the status of the packet received.

The FIFO module provides the interface between the receive side of the TSMAC and the host CPU TCP/IP stack. It
is a LatticeXP EBR Dual Clock 9x1024 FIFO library element. The received byte is written into bits 0 to 7 and the
End of Frame (EOF) indicator is written into bit 8. The CPU reads from a register, which transfers the data bytes
sequentially out of the FIFO, and stores the bytes for TCP/IP processing.

The Rx Regs module provides the register interface to the CPU. The CPU monitors bits in the control registers to
discover when a new packet has been received and reads the received IP packet data bytes from another register.
Receive status information is also stored in numerous registers in this module. The CPU reads the Data byte regis-
ter to get the data contents of the received packet.

Rx Regs Signal Descriptions:

 These signals are the interface to the CPU and software and govern the hard-
ware/software interaction. Signal descriptions for the TSMAC and FIFO can be found in their user manuals.

Table 2. Rx Regs Signal Descriptions

Signal Type Description

Rx_Data Input TSMAC rx_dbout bits 7:0, even byte of packet word

EOF Input End of Frame marker, set for last byte of packet

Rd Output Controls clocking next byte from FIFO

FIFO_reset Output Controls resetting the RX_FIFO. Allows software ability to clear FIFO during initialization.

FIFO_empty Input Indicates when FIFO empty. Tells software no more RX_DATA reads are needed.

Pkt_Avail Input Indicates when a complete packet has been loaded. This is TSMAC rx_eof latched in for the CPU to
read.

Rx_err Input Indicates when a packet error was detected. This is TSMAC rx_error latched in for the CPU to read.

Rx_recvd Input 16 bit counter of number of good packets received. Incremented by RX_IP logic.

Rx_drop Input 16 bit counter of number of packets dropped when FIFO was full. Incremented by RX_IP logic.

Rx_CRC_err Input 16 bit counter of number of packets dropped because of rx_error signal. Incremented by RX_IP
logic.

Rx_Stats_Vec Input 32 bit register holding last TSMAC rx_stat_vec. Latched in by rx_stat_en.

TSMAC
Rx FIFO

Rx Regs

rx_dbout[7:0]

rx_write

rx_eof

wr_clk rd_clk

reset

Data[8:0] Rx_Data[7:0]

Pkt_Avail

EOF

FIFOreset

FIFO empty

FIFO full

ignore_next_pkt

rx_error

rx_stat[31:0]

rx_stat_en

Rx_recvd
Rx_drop
Rx_CRC_err
Rx_Stats_Vec

rx_err

Wishbone
Bus

rd

FIFOempty

rx_fifo_error

rx_fifo_full

18

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Receive Registers

The TSMAC is located at address 0x8200 on the Wishbone bus.

Table 3. Rx Interface Register Map

Table 4. Register Name: Rx_Data, Address: 0x8100

Table 5. Register Name: Rx_Ctrl, Address: 0x8102

Table 6. Register Name: Rx_Stats, Address: 0x8103

Table 7. Register Name: Rx_recvd_hi, Address: 0x8104

Table 8. Register Name: Rx_recvd_lo, Address: 0x8105

Offset Name Description

0 Rx_Data Receive data byte

1 Not used

2 Rx_Ctrl Bits control RX FIFO

3 Rx_Status Bits monitor RX FIFO

4-5 Rx_recvd Total number of good packets received

6-7 Rx_drop Total number of packets dropped because FIFO still full (CPU too slow)

8-9 Rx_CRC_err Total number of packets dropped because CRC check failed

0x0a-0x0d Rx_Stats_Vec 32-bit receive statistics vector from TSMAC core. Valid for current received packet only

Bits Name R/W Description

7:0 Rx_Data R Receive byte – Read to get next byte from receive FIFO

Bits Name R/W Description

7:4 reserved R Reads back 0’s

2 FIFO_reset R/W Write a 1 to force the FIFO to reset. Used for error recovery and driver
initialization. Should not be written when TSMAC is storing bytes

1:0 reserved R Reads back 0’s

Bits Name R/W Description

7:6 reserved R Reads back 0’s

5 FIFO_full R Set when Rx FIFO is full, indicating FIFO overflow error condition

4 FIFO_empty R Set when Rx FIFO empty, indicating CPU read last byte

3 MAC_fifo_err R Set when the TSMAC detected an error in a received packet

2 Gig_en R Set if 1000baseT mode enabled. This should be always be 0

1 Rx_EOF R Read along with Rx_Data to see if more bytes are still in RX FIFO. 0=
more bytes, 1 = last byte, end of frame

0 Pkt_Avail R Set when a new packet is available in the RX FIFO. Cleared when FIFO
empty (CPU read every byte)

Bits Name R/W Description

7:0 Rx_recvd_hi R High byte of total good received packets (16-bit counter)

Bits Name R/W Description

7:0 Rx_recvd_lo R Low byte of total good received packets (16-bit counter)

19

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Table 9. Register Name: Rx_drop_hi, Address: 0x8106

Table 10. Register Name: Rx_drop_lo, Address: 0x8107

Table 11. Register Name: Rx_CRC_err_hi, Address: 0x8108

Table 12. Register Name: Rx_CRC_err_lo, Address: 0x8109

Table 13. Register Name: rx_stats_vec[0], Address: 0x810a

Bits Name R/W Description

7:0 Rx_drop_hi R High byte of total dropped packets (16-bit counter) cause FIFO busy

Bits Name R/W Description

7:0 Rx_drop_lo R Low byte of total dropped packets (16-bit counter) cause FIFO busy

Bits Name R/W Description

7:0 Rx_CRC_err_hi R High byte of total dropped CRC error packets (16-bit counter)

Bits Name R/W Description

7:0 Rx_CRC_err_lo R Low byte of total dropped CRC error packets (16-bit counter)

Bits Name R/W Description

7 Long Frame R Long Frame. This bit is set when a frame longer than specified in the
MAX_FRAME_LENGTH register is received

6 Short frame R Short Frame. This bit is set when a frame shorter than the value speci-
fied in the MIN_FRAME_LENGTH register is received

5 IPG violation R IPG Violation. This bit is set when a frame is received before the IPG
timer runs out

4 Preamble shrink R Preamble Shrink. This bit is asserted if the number of Preamble bytes
received is not equal to seven

3 Prev. Carrier R Carrier Event Previously Seen

2 Packet ignored R Packet Ignored. When set, this indicates the incoming packet is to be
ignored

1 CRC error R CRC Error. This bit is set when a frame is received with an error in the
CRC field

0 Length error R Length Check Error. This bit is set if the number of data bytes in the
incoming frame matches the value in the length field of the frame

20

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Table 14. Register Name: rx_stats_vec[1], Address: 0x810b

Table 15. Register Name: rx_stats_vec[2], Address: 0x810c

Table 16. Register Name: rx_stats_vec[3], Address: 0x810d

Bits Name R/W Description

7 Recv OK R Receive OK. This bit is set if the frame is received without any error

6 Multicast Addr R Multicast Address. This bit is set to indicate the received frame con-
tains a Multicast Address

5 Broadcast Addr R Broadcast Address. This bit is set to indicate the received frame con-
tains a Broadcast Address

4 Dribble nibble R Dribble Nibble. This bit is set when only 4 bits of the data presented on
the RS interface are valid

3 Bad opcode R
Unsupported Opcode. This bit is set if the received control frame has
an unsupported opcode. In this version of the IP, only the opcode for
PAUSE frame is supported.

2 Control Frame R Control Frame. This bit is set to indicate that a Control frame was
received

1 PASUE frame R PAUSE Frame. This bit is set when the received Control frame contains
a valid PAUSE opcode

0 VLAN Tag R VLAN Tag Detected. This bit is set when the Tri-Speed MAC receives a
VLAN Tagged frame

Bits Name R/W Description

7:0 ByteCount_hi R High byte of frame byte count

Bits Name R/W Description

7:0 ByteCount_lo R Low byte of frame byte count

21

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Transmit Design

The following figure diagrams the components, data flow and control flow for transferring an IP packet, assembled
by the CPU, into the TSMAC for transmit.

Figure 15. Transmit Block Diagram

Module Descriptions: The TSMAC module transmits an Ethernet frame by reading bytes from the Tx FIFO when
signaled with the tx_fifoavail signal. Only the transmit signals of the TSMAC are shown in the above figure. These
signals provide information about the status of the packet being transmitted and control clocking bytes out of the
FIFO for transmit. The TSMAC reads the bytes directly from a LatticeXP EBR Dual Clock FIFO library element.

The Tx FIFO module is a standard 9x1024 Dual Clock FIFO generated with IPexpress™ for a LatticeXP. Each 9-bit
entry holds the byte to transmit (8 bits) and the tx_fifoeof signal (1 bit). The tx_fifoeof bit is used to indicate the last
byte of a packet. It is 0 for all bytes except the last byte to transmit, in which case it is set to 1. This is done by the
CPU when loading the FIFO.

The Tx Regs module provides the register interface to the CPU. The CPU writes the data bytes to be transmitted
into TX_Data and the EOF bit, which are then clocked into the FIFO. Transmit status information is also stored in
other registers in this module.

Tx Regs Signal Descriptions: These signals are the interface between the software the Tx FIFO logic and govern
the hardware/software interaction. Signal descriptions for the TSMAC and FIFO can be found in their respective
user manuals.

TSMAC
Tx FIFO

Tx Regs

tx_fifodata [7:0]

tx_macread rd_clk

wr_clk

reset

Data[8:0]

tx_fifoeof

Tx_Data[7:0]

Pkt_Avail

FIFOreset

FIFO empty tx_fifoempty

tx_done

tx_stat[30:0]

tx_stat_en

tx_fifoavail

Tx_Err

Ctrl_Frame

tx_discfrm

tx_fifoctrl

Tx_Done

Wishbone
Bus

EOF

Tx_sent_cnt
Tx_err_cnt
Tx_Stats_Vec

tx_sndpaustim[15:0]

tx_sndpausreq

 PauseTimeLo
 PauseTimeHi
SendPause

22

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Table 17. Tx Regs Signal Descriptions

Note: The PAUSE signal is not used in demo operation. The core supports the ability to handle PAUSE frames, but
the demo does not actively use them for flow control to keep things simple.

Transmit Registers

The TSMAC is located at address 0x8200 on the Wishbone bus.

Table 18. Tx Interface Register Map

Table 19. Register Name: Tx_Data, Address: 0x8110

Signal Type Description

Tx_Data Output TSMAC tx_fifodata bits 7:0

EOF Output End of Frame indicator paired with each byte. This bit is sent unchanged to the TSMAC
with each corresponding data byte read from the FIFO

Wr Output Controls clocking next word into the FIFO. Activated by writing Tx_Data. Values in Tx_Data
and EOF are written into the FIFO

FIFO_reset Output Controls reseting the TX_FIFO. Allows software ability to clear FIFO during initialization

Pkt_Avail Output Indicates to logic a complete packet has been loaded into the FIFO. The TX_IP logic can
then signal the TSMAC to start transmitting

Tx_Done Input Indicates packet has been sent. This FIFO empty signal. Once set the CPU can load new
packet into FIFO

Tx_Err Input Indicates when a packet error was detected. This is TSMAC rx_error latched in for the
CPU to read

Ctrl_frame Output Set by software to indicate frame type: 0=normal, 1= control (PAUSE)

Tx_sent Input 16-bit counter of number of good packets sent. Incremented by TX_IP logic. Based on sta-
tus of TSMAC tx_done signal

Tx_err Input 16-bit counter of number of packets error. Incremented by TX_IP logic. Based on status of
TSMAC tx_discfrm signal

Tx_Stats_Vec Input 32-bit register holding last TSMAC tx_stat_vec. Latched in by tx_stat_en

PauseTimeLo
PauseTimeHi Output (2) 8-bit registers holding the PAUSE frame Timer value

SendPause SendPause Bit signaling TSMAC to send a PAUSE frame

Offset Name Description

0x10 Tx_Data Transmit byte – Write to get byte into transmit FIFO

0x12 Tx_Ctrl Bits to control TSMAC and TX FIFO

0x13 Tx_Stats Bits to monitor TSMAC and TX FIFO

0x14-15 Tx_sent Total number of packets transmitted without errors

0x16-17 Tx_err Total number of packets dropped because of transmit errors, collisions

0x18-1b Tx_Stats_Vec 32-bit transmit statistics vector from TSMAC core. Valid for last transmitted packet only

0x1c-1d PAUSE timer 16-bit value to send in a PAUSE control frame

Bits Name R/W Description

7:0 Tx_Data W Byte to load into FIFO for transmit

23

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Table 20. Register Name: Tx_Ctrl, Address: 0x8112

Table 21. Register Name: Tx_Stats, Address: 0x8113

Table 22. Register Name: Tx_sent_hi, Address: 0x8114

Table 23. Register Name: Tx_sent_lo, Address: 0x8115

Table 24. Register Name: Tx_err_hi, Address: 0x8116

Table 25. Register Name: Tx_err_lo, Address: 0x8117

Table 26. Register Name: tx_stats_vec[0] (bits 31-24), Address: 0x8118

Bits Name R/W Description

7:4 reserved Write as 0’s, reads back what was written (0 at power-up)

4 SendPause R/W 1=send pause frame, 0=normal operation

3 Ctrl_frame R/W 1=control frame, 0=normal IP frame (default)

2 FIFO_reset R/W Write a 1 to force the FIFO to reset. Used for error recovery and driver
initialization. Should not be written when TSMAC is storing bytes.

1 EOF R/W 0 = more bytes to follow, 1 = last byte - End Of Frame

0 Pkt_Avail R/W Set when a new packet is available in the TX FIFO. Start TSMAC trans-
mitter when set to 1

Bits Name R/W Description

7:4 reserved Write as 0’s, reads back what was written (0 at power-up)

3 TxFIFO_empty R Set when TX FIFO is empty

2 TxFIFO_Full R Set when TX FIFO has no more room

1 Tx_err R Set when the TSMAC detected an error in a transmitted frame

0 Tx_done R Set when TSMAC done transmitting the frame

Bits Name R/W Description

7:0 Tx_sent_hi R High byte of total good transmitted packets (16-bit counter)

Bits Name R/W Description

7:0 Tx_sent_lo R Low byte of total good transmitted packets (16-bit counter)

Bits Name R/W Description

7:0 Tx_err_hi R High byte of total dropped packets (16-bit counter) collisions

Bits Name R/W Description

7:0 Tx_err_lo R Low byte of total dropped packets (16-bit counter) collisions

Bits Name R/W Description

7 reserved R Reads as 0

6 Short Frame R FCS generation is disabled and a short frame was transmitted

5:2 Collision Count R 4-bit count of number of early collisions

1 Excessive
Collision R Excessive collision

0 Late collision R Late collision

24

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Table 27. Register Name: tx_stats_vec[1] (bits 23-16), Address: 0x8119

Table 28. Register Name: tx_stats_vec[2] (bits 15-8), Address: 0x811a

Table 29. Register Name: tx_stats_vec[3] (bits 7-0), Address: 0x811b

Table 30. Register Name: PAUSE_Time_hi, Address: 0x811c

Table 31. Register Name: PAUSE_Time_lo, Address: 0x811d

CPU IP
An embedded 8-bit CPU IP core is used to execute the software TCP/IP stack and networking applications. The
core is a Verilog synthesizable 8-bit Z80 microprocessor. This core, the tv80, was obtained from www.Open-
Cores.org. The following quote describes its functionality:

The tv80 core was created as a Verilog port of the VHDL T80 core, Wallner, D., VHDL T80 Core, .[1], for use as
a maintenance processor inside an ASIC. The tv80 has been modified since then for better synthesis tim-
ing/area results, and to incorporate several bug-fixes.

The T80, and the tv80 derived from it, attempt to maintain the original cycle timings of the Z80, but have radi-
cally different internal designs and timings. With its target being ASIC and embedded applications, the tv80
does not attempt to maintain the original pinout of the Z80.

Memory IP
The CPU uses the EBR memories for program instructions, data storage and stack. The memories start at address
0 on the Wishbone system bus, which corresponds to the CPU’s reset vector. The memory is constructed using
IPexpress to instantiate a standard 20k x 8 bit array of SRAM.

Bits Name R/W Description

7 Excessive
Deferred R Excessive Deferred transmission

6 Deferred R Deferred transmission

5:0 ByteCount_hi R Upper six bits of transmit frame byte count

Bits Name R/W Description

7:0 ByteCount_lo R Lower eight bits of transmit frame byte count

Bits Name R/W Description

7 VLAN tagged R VLAN tagged frame transmitted

6 PAUSE frame R PAUSE frame transmitted

5 FIFO underrun R FIFO ran empty during transmission, incomplete frame

4 JUMBO frame R Jumbo frame transmitted

3 Bad FCS R Bad FCS detected during transmission

2 BroadCast R Broadcast frame transmitted

1 MultiCast R Multicast frame transmitted

0 UniCast R UniCast frame transmitted

Bits Name R/W Description

7:0 PAUSE_hi R High byte of PAUSE time register setting

Bits Name R/W Description

7:0 PAUSE_lo R Low byte of PAUSE time register setting

25

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

CPM Debug IP (JTAG)
The CPM Debug IP module provides a method for performing bus operations on the Wishbone bus via a CPM
master other than the CPU. The CPM Debug IP allows an external host (PC running an application connected to
the evaluation board via ispVM System software), to read/write memory on the Wishbone bus. This allows a certain
level of CPU and system debugging to be performed, by halting the CPU and inspecting memory contents. The
program memory can also be loaded by writing directly into the EBR memories. The CPM Debug module also has
registers that appear on the Wishbone to allow the CPU to write data back to, and read data from, the host PC. This
allows the CPM Debug to act as a “stdio” conduit to allow program output (simple prints) to be directed to the PC
where they can be displayed. The CPM Debug IP shares the Wishbone bus through the bus arbiter. The CPM
Debug can lock the bus for itself, essentially freezing the CPU.

Figure 16. Debug with CPM Debug IP

Description of Operations

The CPM Debug IP receives commands from application software over the JTAG interface. The command is
loaded into a user scan ring in JTAG and decodes to either a read or write operation. The target of the operation is
an address on the WISHBONE system or an internal register. For this application, external addresses are from
0x0000 to 0xffff, and internal registers start at 0x10000 (bit A16 set).

An external address access performs a bus operation using the CPM Master interface. This is a normal bus opera-
tion (read or write), transferring data to/from the CPM slave device. The results should be exactly the same as
when the CPU performs the operation to the CPM Slave device.

An internal address accesses registers inside the CPM Debug IP block. These registers are used for exchanging
message data between the external application and the CPU. These registers also provide control of the CPU, by
forcing it into reset, and the ability to lock the bus so CPM Debug has exclusive access.

CPM
Debug

IP

Rx
FIFO

Tx
FIFO

CPM.s

JTAG

CPM.m CPM.m CPU

Bus Arbiter

Host PC

WISHBONE
System Bus

Lock

C
T
R
L

Reset

WISHBONE
System Bus

26

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Displaying Messages

Another use of the CPM Debug is to provide a stdio port for the program executing on the CPU. The CPM Debug IP
has transmit and receive FIFOs that are accessible to a CPU on the Wishbone bus. The CPM Debug can be
viewed as a UART. The following steps explain how this works.

1. The CPU wants to send a character string message to a “console” application on the PC attached to the
ispVM JTAG module. It prepares to copy the characters one at a time into the transmit FIFO

2. The CPU reads the CPM Debug control register to see if the FIFO is full. The CPU writes a byte into the
TX_FIFO register and repeats, checking the fill status before each write. If the FIFO is full, the CPU waits
before writing in any more bytes into the FIFO (driver’s choice to drop characters or block program)

3. The console application on the PC continuously sends JTAG commands to read the TX_FIFO status.
When it detects it is no longer empty, it sends commands to read out bytes in the TX_FIFO and display
them. Reading of the TX_FIFO stops whenever the FIFO is empty

4. Reversing the roles of the CPU and host application would allow data to be sent to the program running on
the CPU

Figure 17. CMP Debug IP as STDIO Port

Registers and Addresses

Table 32. CPM Debug Module Register Map

Address Name Description

0xffff - 0x0000 Bus Access Perform the Wishbone bus operation (read/write) to the target address. Bus access
via CPM.master port

0x10000 Status FIFO status register

0x10001 Tx_FIFO Writes from CPU side, reads from JTAG side

0x10002 Rx_FIFO Reads from CPU side, writes from JTAG side

0x10003 Ctrl Control register

0x10004 Counts Tx/Rx FIFO level count register: Rx[7-4]; Tx[3-0]

Tx FIFO
8bitx16

Rx FIFO
8bitx16

Ctrl
Reg.

Wishbone
Bus Side
(CPU accesses)
Registers mapped
onto bus.

CPM Debug
(debugger
accesses)

CPU reads to get
bytes sent from PC

CPU writes to send
bytes to PC

CPU reads for
FIFO statuses

CPM Debug IP
sets/gets FIFO
statuses

CPM Debug IP
gets byte for PC

CPM Debug IP stores
byte from PC

27

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Table 33. Register Name: Status, Address: 0x10000 (JTAG); 0x8400 (WISHBONE)

Table 34. Register Name: Tx_FIFO, Address: 0x10001 (JTAG); 0x8401 (WISHBONE)

Table 35. Register Name: Rx_FIFO, Address: 0x10002 (JTAG); 0x8402 (WISHBONE)

Table 36. Register Name: Counts, Address: 0x10003 (JTAG); 0x8403 (WISHBONE)

Table 37. Register Name: Ctrl, Address: 0x10004 (JTAG); (not visible from WISHBONE)

GPIO Register IP
The GPIO registers are memory mapped addressable by the CPU. They start at address 0x8000 on the Wishbone
bus. Software writes to these registers to blink LEDs to report status such as packet Tx/Rx, error packet, packet
count, etc. DIP switch settings (not currently used) could be read to configure demo operation.

Table 38. GPIO Register Map

Bits Name CPU R/W Description

7:4 reserved R Reads 0’s

3 RX_FIFO_FULL R Set when RX FIFO is full and cannot accept another byte from JTAG. CPU
needs to read bytes out

2 RX_FIFO_EMPTY R Set when RX FIFO has no bytes in it. First byte written in from JTAG clears
this. CPU reads this to see if bytes available

1 TX_FIFO_FULL R Set when TX FIFO if full and cannot accept another byte from bus

0 TX_FIFO_EMPTY R Set when TX FIFO has no bytes in it. First byte written in clears it

Bits Name CPU R/W Description

7:0 Tx_FIFO W CPU writes to send byte to host PC, CPM Debug reads to get byte des-
tined for PC application

Bits Name CPU R/W Description

7:0 Rx_FIFO R CPU reads to get a byte sent from PC, CPM Debug writes in to send
bytes to CPU software

Bits Name CPU R/W Description

7:4 Rx_FIFO_CNT R 4-bit count (0-15) of number of bytes in FIFO: 0 = none (if
RX_FIFO_EMPTY bit is set) or 16 (if RX_FIFO_FULL bit is set)

3:0 Tx_FIFO_CNT R 4-bit count (0-15) of number of bytes in FIFO: 0 = none (if
TX_FIFO_EMPTY bit is set) or 16 (if TX_FIFO_FULL bit is set)

Bits Name CPU R/W Description

7:2 reserved R Reads 0’s

1 CPU reset R/W When set, forces CPU into RESET. When clear, CPU runs

0 Bus Lock R/W When set, CPM Debug owns bus and CPU busreq is asserted. When
clear, CPU runs and uses bus

Address Description

0x8000 LED register

0x8001 7-segment display register

0x8002 DIP switch input

28

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

7-Segment LED Usage

The 7-segment display counts the number of received packets. The decimal point indicates an error condition has
been detected with the MAC or the transmit/receive FIFOs.

Discrete LEDs

• D1 = heart beat

• D2 = packet received

• D3 = packet transmit

• D4 = ARP request received

• D5 = finger request received

• D6 = http request received

• D7 = PHY activity LED - direct signal from PHY

• D8 = PHY 100Mbit Link good - direct signal from PHY

DIP Switch Usage

Not used.

Software
The software to handle TCP/IP packets and serve the web pages runs on the embedded CPU inside the LatticeXP.
The entire CPU, program memory, data and peripherals are all inside the LatticeXP. The software does the follow-
ing tasks:

• On power-up/resets, initializes all devices

• Waits for an Ethernet packet

• Interrogates the packet

• Creates an ARP, ping, finger or web page response

• Sends the packet back to the client computer

Figure 18 shows the flow of the software. It is one forever loop that waits for a packet to come in and then takes
action based on the packet protocol. The software never initiates a connection to another host system. It is always
operating as a passive server, serving requests of the client (PC running the demo).

29

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Figure 18. Software Flow

Main Control Loop
The entire control application exists in one forever loop. This is the standard approach to small control systems.
Interrupts are not used, nor is an OS or executive. The program simply looks for a packet to come in, waits 0.5 sec-
onds, then calls some time dependent routines in uIP and updates any LEDs and statuses. If a packet comes in it
is transferred to the uIP packet buffer and control is given to uIP to process it. If uIP, or the application (finger or
httpd) creates a packet to transmit back, uIP informs the control loop and the control loop calls the driver routine to
transfer the packet to the MAC, and then returns to polling for a new packet.

TSMAC Driver
The software uses a driver to configure and control the TSMAC IP and the external PHY device via the host inter-
face registers. The driver also handles the FIFO interface to send and receive Ethernet packets.

Configuration

• Initialize MAC
– MAC Address
– Mode

• Initialize PHY
– Mode

• Clear Tx/Rx FIFOs

Receive Packet

• Poll pkt_avail bit

• If set, read RxData register, save byte into uIP packet buffer

• Repeat while FIFO is not empty and not EOF

• When EOF or FIFO empty return packet length

• Clear pkt_avail to notify IP that the FIFO is clear and ready for storage of a new arriving packet

main()
 for(;;)
 {
 wait for packet

if ARP
if Ping
if Finger
if HTML

send packet
 }

ARP()
 Create ARP reply
with our MAC address
Load into TX FIFO

Ping()
 Create Ping reply
Load into TX FIFO

Finger()
 Create finger
reply packet with stats
Load into TX FIFO

Html()
 serve requested
page, Load into TX
FIFO, repeat if more

30

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Transmit Packet

• uIP calls the net_drvr to send bytes in the uIP packet buffer

• If tx_done is not set then loop waiting for TX_FIFO to be empty

• Set EOF bit to 0

• Copy byte[n] into TxData register, repeat until last byte

• At last byte set EOF to 1

• Write last byte into TxData, which clocks in to FIFO

• Set pkt_avail to notify IP that the FIFO has a packet to transmit

TCP/IP Software Stack
The software package uIP implements the IP, ICMP and TCP layers of the network stack. uIP is an open source
light-weight TCP/IP stack specially designed for embedded 8-bit CPU systems. It has the following features:

• IP and TCP checksums

• IP fragment reassembly

• Multiple TCP connections

• TCP options

• Variable tCP MSS

• RTT estimation

• TCP flow control

• TCP urget data

The uIP package also comes with the following networking applications:

• ARP - reply to request

• ICMP - (echo == ping)

• HTML server

Information on uIP can be found at: www.sics.se/~adam/uip/

Development Environment
This section discusses how to build the complete demo system. This section is of value to applications engineers,
field application engineers and users who want to see the steps involved in running the Lattice tools (ispLEVER,
IPexpress™, etc.) to create a working system. This is an example design that shows one possible method of imple-
menting the TSMAC IP core in a working system. It is not intended to be a production-ready, complete system
design.

Hardware Components
This section discusses the resources and procedures required to rebuild the design bitstream from the Verilog
sources and IP.

Development Tools

• ispLEVER – Synthesize, simulate IP cores and generate bitstream

• ispVM – Download bitstream into LatticeXP device

It is assumed that ispLEVER has been installed at the default location: C:>ispTOOLS5_1.

31

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

TSMAC Demo Design Files
The Verilog source files and ispLEVER project files are located in TSMAC_XP_Z80/Hdw/ directory. The source
code for the custom designed modules that implement the demo hardware are located under Src/ directory. The
source code is automatically compiled into the project. The tsmac_xp_hdw ispLEVER project configuration is in the
tsmac_xp_hdw.syn file.

TSMAC IP Core
A demo version of the TSMAC core is included in the ispLEVER directory of the project. It will build with all the
other RTL source files of the project to create the working bitstream. For demo purposes, there is no need to obtain
the complete TSMAC IP core package from Lattice.

The TSMAC core can be obtained using the IPexpress flow in the ispLEVER tool. IPexpress downloads the TSMAC
core from the Lattice web site. This is an evaluation version of the core that allows synthesis and operation in Lat-
ticeXP hardware for a demo period of one hour. A license is required for unrestricted use.

To download the TSMAC core, run the IPexpress tool from ispLEVER. Click on the Globe tab at the bottom of the
left pane. This will launch a connection to Lattice IPs server. You may need to configure your Internet connection
options. See Tools -> Preferences... if you need to use a proxy to gain access to the Internet.

For complete information on downloading and installing IPs, refer to the IPexpress Quick Start Guide (url: www.lat-
ticesemi.com/documents/doc18503x86.pdf).

Figure 19. Lattice IP Server Tab for IPexpress User Configurable IP Cores

Highlight the TriSpeed MAC core, right-click and choose to download. It will save an exe file onto your PC that you
later run to install the core software into ispLEVER. After downloading the exe file, close ispLEVER and run the exe
file to install the TSMAC core.

After installing the TSMAC IP package, use ispLEVER and IPexpress again to generate a TSMAC module from the
installed IP.

32

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Figure 20. Installed TSMAC IP Core in IPexpress

Name the core tsmac_core because this is the name expected in the TSMAC_XP_Z80 Demo project. Press the
Customize button and the following screen will appear.

Figure 21. TSMAC IP Parameters GUI

33

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Make sure the MIIM module is included so that the mdio management signals are provided to access and config-
ure the PHY. Press the Generate button and Synplify® will be used to synthesize the IP core into a NGO file that
will be pulled into the demo project during place and route. A black-box Verilog file is also generated for inclusion in
the project.

A ts_mac_eval directory will be created in the ispLEVER project directory. This directory contains all the TSMAC
resources. A readme file explains the directory contents and how to run the simulation test bench that is included
under the ts_mac_eval/testbench/ directory. For the purposes of this demo, no files need to be touched in this
directory tree.

The IPexpress tool creates the black-box Verilog file tsmac_core_bb.v which contains the port list of the TSMAC
module for connection with other project modules. The demo project uses this file for the IP module interface defini-
tions. The actual netlist of the IP is in the file tsmac_core.ngo and will be combined with the project during map and
PAR.

Synthesizing the Demo Design
A number of warnings are generated when synthesizing. These warning can be ignored. They fall into several cat-
egories:

• Synthesis directives – The tool does not ignore certain options, targeted for other synthesis tools, in the IPex-
press generated modules

• Unconnected signals
– Wishbone bus – Not using interrupts or all of the select signal lines
– Z80 signals – Certain interface signals are not used (interrupts, memory refresh, etc.)
– JTAG signals – Not all are needed

• CPU implementation warnings – These are in the Z80 CPU core, and it works despite them

• Carry signals not connected – Not used on most counters in the design

Simulating the Demo Design
No test bench is available yet.

Software Components
This section discusses the resources and procedures required to rebuild the demo application from the C source
files.

Development Tools

• uIP – Freeware, embedded TCP/IP stack and web server

• z88dk – Freeware Z80 C compiler, assembler, executable generator - binary code proven to run on CPU in Ver-
ilog simulator and emulator

• bin2ebr – Utility to convert the application binary program into a format that can be loaded into EBRs

Need to have install location of z88dk in your path to build Z80 application source code.

C:> set PATH=%PATH%;c:\z88dk\bin

TCP/IP Stack and Web Page Application
This section describes how to compile the source code that runs on the embedded Z80 CPU into a binary execut-
able. Include this executable in the bitstream and then download the bitstream into the LatticeXP. The source code
for the drivers, TCP/IP stack and demo application can be found under the Src/uIP_Z80/ directory.

The first step is compiling the source code. The source code consists of the device drivers for the TSMAC, the
TCP/IP stack, the applications including the web pages. The source is built from the Src/uIP_Z80/z80/ directory
with makeweb.bat. Building uses the Z80 z88dk tool set to compile all the code into a binary file in one step.

34

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

C:> makeweb.bat

The resulting files are demo.bin and demo.map. The batch file converts demo.bin into an EBR friendly format and
stores the resulting prog.mem file in the Hdw/ispLEVER/ directory. The EBRs are then initialized using this file.

Pay careful attention to the output of the compiler/assembler. It is not always easy to see warning and error mes-
sages in the output. The compiler uses intermediate file names for the source it is compiling. The batch file will not
stop on an error. You must manually verify that all source files have compiled correctly.

There are two ways to initialize the EBRs with the program contents. One method uses IPexpress; the other uses
ispLEVER command line utilities. The IPexpress method requires re-opening the ebr_mem module in IPexpress
and re-generating the resulting Verilog file. This populates the EBR contents with the new prog.mem file, but
requires re-synthesizing, mapping, placing, routing and creating a bitstream.

The utility method operates only on the post-PAR .ncd file and replaces the initialization contents of the EBRs with
the prog.mem contents and then manually runs the bitgen tool to produce a bitstream. This is the preferred method
since it does not change the design. You must install ispLEVER at c:\ispTOOLS5_1 or edit the setup.bat file to point
to where your ispLEVER tools are installed. This method requires an existing .ncd file. If it is not present, you must
start at the beginning of the flow.

C:> add_prog.bat

C:> isp_bitgen

Web Pages
This section describes how to create/edit the HTML pages and embed them into the source code. The pages are
edited, then compressed to remove extraneous white space and codes, and then compiled into the binary execut-
able. The following tools are required to build and include the web pages:

• HTML Compress utility

• C compiler such as Dev-Cpp or Cygwin gcc

The first step is to edit the actual HTML files. These are located in the Src/uIP_Z80/apps/httpd/pages/orig/ direc-
tory. There are four files that are included into the source. Index.html is the opening page. Mac.html describes the
TSMAC core and xp.html provides information on the LatticeXP FPGA. 404.html is an error page sent by the server
when an unknown request is received. When editing these files, pay careful attention to size. Hand editing the
HTML files is recommended. Do not include images or other content.

After editing, the files are compressed using the HTML Compress utility. The project file is located in
Src/uIP_Z80/apps/httpd/pages/. Double-click on xp_pages.ls5 to start the compress utility.

35

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Figure 22. HTML Compress Utility Window

Click on the yellow lightning bolt to compress all the selected HTML files in the orig/ directory. The resulting com-
pressed HTML files are in this directory (Src/uIP_Z80/apps/httpd/pages/). The original files are not modified.

Check that the files were compressed correctly by opening them in a web browser (double click on index.html and
it should be viewed normally, links to the other pages should work and they should be viewable.)

The next step is to convert the four HTML files into a pseudo file-system that can be processed by the uIP httpd
server. The text pages are converted into Z80 assembly and arranged as data bytes in memory. A file system direc-
tory entry is created that references the start of each file based on the file name. A custom tool generates the file-
system in this format so it can be compiled with the Z80 z88dk tool set. The tool is makepages.exe and a copy
exists in the Src/uIP_Z80/apps/httpd/pages/ directory. The source for the tool is located in
Src/uIP_Z80/apps/httpd/page_tools/. If the pre-built executable does not run on your Windows system, rebuild the
tool from the source in page_tools/.

The makepages.exe utility creates the files fsdata.c and dir_tbl.h. fsdata.c contains all the web page data and the
file system structure. This file is assembled into binary data and embedded into the demo executable. The dir_tbl.h
contains a definition of the file entries in the file system directory structure. Both of these need to be moved up on
directory level for inclusion during compiling.

Run the tool:

C:> makepages files.txt
C:> copy fsdata.c ..
C:> copy dir_tbl.h ..

Troubleshooting
Running the Demo
The board/demo does nothing:

• Make sure the software heartbeat (LED1) is blinking

• Reload the bitstream or run ispLoad with a known working design (i.e. the demo bitstream)

• Press the PROGRAM button, the eval timer may have expired and locked up the board

36

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Cannot ping the board:

• Make sure LED8 is on, indicating a good connection

• Look for LED7 and the yellow LED on the RJ-45 jack to blink, indicating network activity (ping packets being sent
from the PC)

• Look for the counter LED to increment, indicating ping packets are being received by the software

• Make sure the network settings are correct for the board on the network and that the IP address is valid

Web browser will not display pages:

• Ping the board and look for network activity

• Make sure the proxy (if used) is disabled on the browser

• Extreme network activity resulting in demo software losing packets, use direct connect to the board

Problems changing the IP address:

• Make sure setup.bat was run to configure access to the utilities and ispVM and ispLEVER

• Make sure ispVM and a download cable are installed

• Make sure ispLEVER is installed in order to create a new bitstream

Test Points
The following signals are brought out to the bank of headers next to the 7-segment LED. They provide a means to
monitor real-time activity of the TSMAC core with the Tx/Rx FIFOs and the PHY.

Table 39. Signals for Real-Time Monitoring

TP Pin Signal

1 A2 txmac_clk_src

2 A3 mac_tx_fifoavail

3 A4 mac_tx_fifoeof

4 B3 mac_tx_macread

5 B4 mac_tx_done

6 C3 mac_tx_discfrm

7 C4 mac_tx_fifoempty

8 B12 tx_en

9 C5 rxmac_clk_src

10 D3 mac_rx_write

11 D8 mac_rx_eof

12 D9 mac_rx_error

13 A12 mac_ignore_pkt

14 A13 col

15 A18 crs

16 B13 tx_er

17 R2 rx_dv

18 T2 rx_er

37

LatticeXP Tri-Speed
Lattice Semiconductor Ethernet MAC Demo

Third-Party Software
Table 40 lists the third-party software tools, source code, packages, etc. that are used in the TSMAC XP demo.
These packages are all freely available to the general public from various web sites on the Internet. Notices or
claims restricting their use on the TSMAC demo project or prohibit distributing them as part of the demo package
were not found.

Table 40. Third Party Software Tools

Reference Information
The following documents provide more information on topics discussed throughout this guide:

• LatticeXP Data Sheet

• Tri-Speed Ethernet Media Access Controller User’s Guide

• National Semiconductor DP83865 Gig PHYTER Data Sheet

• LatticeXP Advanced Evaluation Board

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

Software Source/Author License Description

UIP Adam Dunkles Open Source BSD C source code for TCP/IP stack and networking
protocols

tv80 Guy Hutchison,
OpenCores.org GPL Verilog Z80 CPU IP

as80 Frank A. Vorstenbosch Freeware Z80 assembler

dasmz80 ??? Freeware, legacy Z80 disassembler

Hex2v Thomas Coonan GPL Utility to create verilog mem file for simulations

z80em Gunter Woigk MIT Z80 CPU emulator core source files

z88dk Dominic Morris,
SourceForge.net

Clarified Artistic
License

Z80 C development environment: compiler,
assembler, linker, libraries, etc.

HTML Compress 5.5 FreeSoft Freeware HTML Compress compresses HTML by removing
unnecessary white space characters

Dev-Cpp BloodshedSoftware.net Freeware C++ compiler/IDE for Windows

	LatticeXP Tri-Speed
	Ethernet MAC Demo
	Introduction
	Application Space
	Limitations
	Background Knowledge

	Installation Guide
	Installation
	Environment Setup

	The Demo
	Demo Setup
	Running the Demo

	Design Details
	Hardware
	Software

	Development Environment
	Hardware Components
	Software Components

	Troubleshooting
	Running the Demo
	Test Points

	Third-Party Software
	Reference Information
	Technical Support Assistance

