
www.latticesemi.com 10-1 tn1178_02.6

February 2014 Technical Note TN1178

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
This technical note describes the clock resources available in the LatticeECP3™ device architecture. Details are
provided for primary clocks, secondary clocks, edge clocks, and general routing, as well as clock elements such as
PLLs, DLLs, clock dividers and more.

The number of PLLs, DLLs and DDR-DLLs for each device is listed in Table 10-1.

Table 10-1. Number of PLLs, DLLs and DDR-DLLs

Clock/Control Distribution Network
LatticeECP3 devices provide global clock distribution in the form of eight quadrant-based primary clocks and flexi-
ble secondary clocks. Two edge clocks are also provided on the left, right and top edges of the device. Other clock
sources include clock input pins, general logic, PLLs, DLLs, DCSs, and clock dividers.

LatticeECP3 Top-Level View
Figure 10-1 provides a view of the primary clocking structure of the LatticeECP3-35 device.

Figure 10-1. LatticeECP3 Clocking Structure (LatticeECP3-35)

Parameter Description ECP3-17 ECP3-35 ECP3-70 ECP3-95 ECP3-150

Number of GPLLs General purpose PLL 2 4 10 10 10

Number of DLLs General Purpose DLL 2 2 2 2 2

Number of DDR-DLLs DLL for DDR applications 2 2 2 2 2

G
P

LL

sysIO Bank 0 sysIO Bank 1

sy
sI

O
 B

an
k

6
sy

sI
O

 B
an

k
7

sy
sI

O
 B

an
k

3
sy

sI
O

 B
an

k
2

G
P

LL

QUADRANT BRQUADRANT BL

QUADRANT TRQUADRANT TL

Primary Clocks

ECLK2

ECLK1

E
C

LK
2

E
C

LK
1

E
C

LK
2

E
C

LK
1

D
D

R
-D

LL

G
P

LL
G

P
LL

D
D

R
-D

LL

C
LK

D
IV

C
LK

D
IV

SERDES QUADS

D
LL

D
LL

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

10-2

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Primary Clocks
The LatticeECP3 architecture provides eight primary global clock nets, all eight of which are available to all quad-
rants; however, each quadrant can have any of these eight nets independent of the others, or they can be tied to
other vertically or horizontally adjacent quadrants. Two of these clocks provide the Dynamic Clock Selection (DCS)
feature. The six primary clocks without DCS can be specified in the Pre-map Preference Editor as ‘Primary Pure’
and the two DCS clocks as ‘Primary-DCS’.

The sources of primary clocks include the following (refer also to Figure 10-35).

• GPLL outputs

• DLL outputs

• PCS TX CLKs

• CLKDIV outputs

• PCLK PIOs

Secondary Clocks
The LatticeECP3 secondary clocks are a flexible region-based clocking resource. A region is an area over which a
secondary clock operates. Each region has eight possible sources to drive secondary clock routing. Note that sec-
ondary/regional clock net boundaries do not always coincide with primary/quadrant clock net boundaries; for exam-
ple, the ECP3-17 has three rows of regions, but two rows of quadrants.

There are eight secondary clock muxes per region. Each mux has inputs from eight different sources. Seven of
these are from internal nodes. The eighth input comes from a primary clock pin. The input sources are not neces-
sarily located in the same region as the mux. This structure enables global use of secondary clocks.

The sources of secondary clocks are:

• Dedicated PCLK clock pins:
– PCLKT0_0
– PCLKT1_0
– PCLKT2_0
– PCLKT3_0
– PCLKT6_0
– PCLKT7_0

• Internal nodes

Table 10-2 lists the number of secondary clock regions in LatticeECP3 devices and Figure 10-2 shows how the
secondary clocks are organized into regions for a typical LatticeECP3 device.

Table 10-2. Number of Secondary Clock Regions

Parameter ECP3-17 ECP3-35 ECP3-70 ECP3-95 ECP3-150

Number of regions 16 16 20 20 36

Layout (Vertical x Horizontal) 4x4 4x4 5x4 5x4 6x6

10-3

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Edge Clocks
The LatticeECP3 device has two Edge Clocks (ECLK) each on the left, right, and top sides of the device. There are
no edge clocks located on the bottom side of the device because of the SERDES blocks located there. These
clocks, which have low injection time and skew, are used to clock I/O registers. Edge clock resources are designed
for high speed I/O interfaces with high fanout capability. In the list of edge clock sources, shown below, there is a
special provision made for signals from the left-side PLLs and DLLs to feed all edge clock banks. This is especially
useful in DDR applications which allow I/Os to be distributed across three edges of the device. Refer to Appendix B
for detailed information on ECLK locations and connectivity.

The sources of edge clocks are:

• For Left and Right Edge Clocks:
– Dedicated clock pins
– GPLL outputs:

- LatticeECP-35: Both PLLs on each side can drive that same side’s edge clock
- Others: Second and third PLL on each side can drive that same side’s edge clock

– GPLL input pins
– DLL outputs
– LEFT side top PLL and DLL can drive both sides (“bridging” capability)
– Internal nodes

• For Top Edge Clocks:
– Dedicated clock pins
– Top left or top right GPLL outputs
– LEFT side top PLL and DLL (“bridging” capability)
– Internal nodes

Edge clocks can directly drive the secondary clock resources and general routing resources. Refer to Figure 10-37
for detailed information on edge clock routing. The edge clocks on the left and right edges can drive the primary
clock resources through the CLKDIV blocks.

Figure 10-2 shows the structure of the secondary clocks and edge clocks for a typical device.

Figure 10-2. LatticeECP3 Secondary Clocks and Edge Clocks (ECP3-35)

sysIO Bank 0 sysIO Bank 1

sy
sI

O
 B

an
k

6
sy

sI
O

 B
an

k
7

sy
sI

O
 B

an
k

3
sy

sI
O

 B
an

k
2

G
P

LL
G

P
LL

ECLK2

ECLK1

E
C

LK
2

E
C

LK
2

E
C

LK
1

E
C

LK
1

D
Q

S
D

LL

G
P

LL
G

P
LL

D
Q

S
D

LL

Secondary
Clock

Region 1

Secondary
Clock

Region 5

Secondary
Clock

Region 9

Secondary
Clock

Region 13

Secondary
Clock

Region 2

Secondary
Clock

Region 6

Secondary
Clock

Region 10

Secondary
Clock

Region 14

Secondary
Clock

Region 3

Secondary
Clock

Region 7

Secondary
Clock

Region 11

Secondary
Clock

Region 15

Secondary
Clock

Region 4

Secondary
Clock

Region 8

Secondary
Clock

Region 12

Secondary
Clock

Region 16

D
LL

D
LL

DSP Row

EBR Row

EBR Row

SERDES QUADS

10-4

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

General Routing for Clocks
The LatticeECP3 architecture supports the ability to use the general routing, normally used for data routing, as a
clock resource. This resource is intended to be used for small areas of the design to allow additional flexibility in
linking dedicated clocking resources and building very small clock trees.

The general routing of the LatticeECP3 is optimized for data routing. Clocks can be routed on this resource, but will
not have the same performance as the dedicated clocking resources. Due to the large amount of connectivity the
place and route of this resource will not have as tight a skew as the dedicated clocking resources. For this reason it
is best to limit the distance of a general routing based clock as well as the number of loads.

Additional Connectivity for Dedicated Clock Resources
The dedicated clocking resources in the LatticeECP3 all have preferred entry points for the clock signal. Some-
times these entry points cannot be used by the user. To allow flexible connectivity to the dedicated resources the
general routing can also be used an entry point. This is useful when creating a clock gate or clock MUX imple-
mented in FPGA LUTs.

Figures 10-3 and 10-4 provide examples of using general routing to bridge a clock source to a dedicated clock
resource. Figure 10-3 uses a LUT such as would be used for a clock gate or MUX. Figure 10-4 uses a PIO, or
FPGA I/O input pin, to bridge to a dedicated clock resource. This is the structure that would be found if a non-pre-
ferred input pin was selected.

Figure 10-3. General Routing Connection to Dedicated Clock Resource from LUT

Figure 10-4. General Routing Connection to Dedicated Clock Resource from PIO

Note: General Routing cannot be used in the source path for edge clocks. Edge clocks are high-speed resources
which require clean and duty-cycle balanced sources. The Place and Route software in Lattice Diamond® will not
allow general routing in the source path to edge clocks.

General Routing

LUT

Primary/Secondary Clock Tree

General Routing

PIO

Primary/Secondary Clock Tree

10-5

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

When using the general routing to reach a dedicated resource the place and route process will issue a warning.
Below is an example warning message.

WARNING - par: Regional clock signal "myclk" drives a PIO comp.
 Generic routing may have to be used to route to the PIO load of
 this regional clock.

These warnings are intended to alert the user that general routing is being utilized to route a portion of the clock
before it arrives at a dedicated resource.

Very Small Clock Domains
General routing can be used to make very small clock domains. As discussed previously, the general routing
requires a large number of connections to allow flexible data routing. These additional connections will increase the
skew that can occur when implementing clocks. Due to this skewed reality of the general routing it is best to limit
the number of loads on the clock.

Small clock domains should be grouped together using a UGROUP preference (see the Diamond Help >Con-
straints Reference Guide > Preferences > UGROUP). A UGROUP preference is a placement constraint which
Place & Route will utilize to place all of the components in the group close together. This constraint will attempt to
keep the routing distance to a minimum and thereby reduce the amount of clock skew that can occur between the
destinations.

Figure 10-5 shows an example of using general routing for a small clock domain.

Figure 10-5. Small Clock Domain Example with General Routing

Static Timing Analysis of General Routing Clocks
All LatticeECP3 designs require the user to run static timing analysis using the Trace process. When using general
routing for clocks it is necessary to generate both a setup and hold time Trace report. These setup and hold checks
will ensure that any skew induced by the general routing connections will be accounted for by the timing tools and
reported to the user.

In the Diamond Strategy for Place & Route Trace make sure the Analysis Option is set to “Standard Setup and Hold
Analysis”. This option will create a Trace report which includes both the setup and hold times of the requested num-
ber of worst-case paths per preference. The user should examine the general routing based clocks carefully to
ensure that these paths meet their timing preferences.

Specifying Clocks in the Design Tools
If desired, designers can specify the clock resources, primary, secondary or edge to be used to distribute a given
clock source. Figure 10-6 illustrates how this can be done in the ispLEVER® Design Planner Spreadsheet View (or
in Spreadsheet View in the Lattice Diamond design software). Alternatively, the resources can be specified by
using corresponding preferences in the preference file.

General Routing

UGROUP

LUT

10-6

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Global Primary Clock and Quadrant Primary Clock
Global Primary Clock
If a primary clock is not assigned as a quadrant clock, the software assumes it is a global clock.

There are six Global Primary/Pure clocks and two Global Primary/DCS clocks available.

Primary-Pure and Primary-DCS
Primary Clock Net can be assigned to either Primary-Pure (CLK0 to CLK5) or Primary-DCS (CLK6 and CLK7).

Quadrant Primary Clock
Any primary clock may be assigned to a quadrant clock. The clock may be assigned to a single quadrant or to two
adjacent quadrants (not diagonally adjacent).

When a quadrant clock net is used, the user must ensure that the registers each clock drives can be assigned in
that quadrant without any routing issues.

When using IO Registers with quadrant clocking, user needs to be aware of which specific banks are connected to
which quadrant clock. Here is list of quadrant clocks and the banks to which they connect.

• QUADRANT_TR => IO BANK 1, 2, 8

• QUADRANT_BR => IO BANK 3

• QUADRANT_TL => IO BANK 0, 7

• QUADRANT_BL => IO BANK 6

In the quadrant primary clocking scheme, the maximum number of primary clocks is 32. Note, however, that these
are not global primary clocks; the maximum number of global primary clocks is eight.

Primary quadrant clocks can be preferenced in the .lpf file by using this format:

USE PRIMARY [PURE | DCS] [NET | PORT “<net or port name>” [quadrant_type]];

where:

<net or port name> = specific clock net name <string>
[quadrant_type] ::= [QUADRANT_TL | QUADRANT_TR | QUADRANT_BL | QUADRANT_BR]
QUADRANT_TL ::= Top left corner of the FPGA
QUADRANT_TR ::= Top right corner of the FPGA
QUADRANT_BL ::= Bottom left corner of the FPGA
QUADRANT_BR ::= Bottom right corner of the FPGA

One or two quadrants can be specified, for example:

USE PRIMARY NET “clk” QUADRANT_TL QUADRANT_TR;

10-7

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Figure 10-6. ispLEVER Design Planner Spreadsheet View (see Appendix C Figure 10-39 for Diamond
Equivalent)

Refer to “Appendix A. Primary Clock Sources and Distribution and Dedicated DCS Clock Sources” on page 42 for
detailed clock network diagrams.

Global Secondary Clock and Regional Secondary Clocks
Global Secondary Clocks
Secondary clocking is regional. However, if no secondary regions are defined, software will combine all secondary
clock regions into a signal global secondary clock structure comprising up to eight secondary clock/CE/LSR
sources. If nets are not assigned to secondary regions, the software will automatically assign up to eight
clock/CE/LSR nets to use secondary resources in this global secondary clock structure.

Regional Secondary Clocks
Secondary clock resources are regional, meaning there are different clock regions within the device as a whole.
Each LatticeECP3 device has a different number of regions based on the size. Below is a basic diagram of the sec-
ondary clock region resources for each LatticeECP3.

LatticeECP3-17K / 35K:

LatticeECP3-70K / 95K:

R1C1 R1C R1C3 R1C4

R2C1 R2C2 R2C3 R2C4

R3C1 R3C2 R3C3 R3C4

R4C1 R4C2 R4C3 R4C4

R1C1 R1C2 R1C3 R1C4

R2C1 R2C2 R2C3 R2C4

R3C1 R3C2 R3C3 R3C4

R4C1 R4C2 R4C3 R4C4

R5C1 R5C2 R5C3 R5C4

10-8

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

LatticeECP3-150K:

Secondary Region Clock Preferencing
In order to use secondary clock regions, the user must create a secondary clock region, then preference their clock
to it.

To create a region, the format is:

REGION "<region name>" CLKREG "CLKREG_R1C1" <# of Columns to Span> <# of Rows to Span>;
USE SECONDARY NET "<clock net>" <region name>;

where:

<region name> = A unique region name given to each region preference.

<clock net> = Specific clock/CE/LSR name.

"CLKREG_R1C1" = The row/column starting point as defined above for each device.

<# of Columns to Span> = Number of columns deep the secondary clock region will encompass. It can be from
1 to 6, depending on which device is used.

<# of Rows to Span> = Number of rows wide the secondary clock region will encompass. It can be from 1 to 6,
depending on which device is used.

For example, we will create a region in a LatticeECP3-150K device and assign a clock to it.

REGION "D_QUAD_R" CLKREG "CLKREG_R1C4" 5 3;

USE SECONDARY NET "clk1" D_QUAD_R;

This will create a secondary clock region that is five columns deep, by three rows wide, starting at R1C4 and clk1
will reside only in that area. Any logic that is clocked by clk1 will be placed within that region. If it cannot be placed
in that region a DRC error will occur in place and route. The diagram of this region looks like this:

R1C1 R1C2 R1C3 R1C4 R1C5 R1C6

R2C1 R2C2 R2C3 R2C4 R2C5 R2C6

R3C1 R3C2 R3C3 R3C4 R3C5 R3C6

R4C1 R4C2 R4C3 R4C4 R4C5 R4C6

R5C1 R5C2 R5C3 R5C4 R5C5 R5C6

R6C1 R6C2 R6C3 R6C4 R6C5 R6C6

R1C1 R1C2 R1C3 R1C4 R1C5 R1C6

R2C1 R2C2 R2C3 R2C4 R2C5 R2C6

R3C1 R3C2 R3C3 R3C4 R3C5 R3C6

R4C1 R4C2 R4C3 R4C4 R4C5 R4C6

R5C1 R5C2 R5C3 R5C4 R5C5 R5C6

R6C1 R6C2 R6C3 R6C4 R6C5 R6C6

10-9

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

sysCLOCK™ PLL
The LatticeECP3 PLL provides features such as clock injection delay removal, frequency synthesis, phase/duty
cycle adjustment, and dynamic delay adjustment. Figure 10-7 shows the block diagram of the LatticeECP3 PLL.

Generally, the best way to add a PLL to a design is by using IPexpress™; the user simply provides information to
the tool via a GUI, and the tool performs all calculations and design rule checks. It then generates a package that
can be added to your design in the HDL language of your choice.

Figure 10-7. LatticeECP3 PLL Block Diagram

CLKFB
Divider

RST

CLKFB

CLKI

LOCK

DRPA0

DFPA0

CLKOP

CLKOS

RSTK

WRDEL

FDA

CLKOK2

CLKOK

CLKI
Divider

PFD VCO/
Loop Filter

CLKOP
Divider

Phase/
Duty Cycle/
Duty Trim

Duty Trim

CLKOK
Divider

Lock
Detect

CIB

3

DRPAI
DFPAI

10-10

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Functional Description
PLL Divider and Delay Blocks
Input Clock (CLKI) Divider
The CLKI divider is used to control the input clock frequency into the PLL block.This is also referred to as the M-
Divider. The divider setting directly corresponds to the divisor of the output clock. The input and output of the input
divider must be within the input and output frequency ranges specified in the LatticeECP3 Family Data Sheet. This
is checked by IPexpress.

Feedback Loop (CLKFB) Divider
The CLKFB divider is used to divide the feedback signal. This is also referred to as the N-Divider. Effectively, this
multiplies the output clock, because the divided feedback must speed up to match the input frequency into the PLL
block. The PLL block increases the output frequency until the divided feedback frequency equals the input fre-
quency. The input and output of the feedback divider must be within the input and output frequency ranges speci-
fied in the LatticeECP3 Family Data Sheet. This is checked by IPexpress.

Output Clock (CLKOP) Divider
The CLKOP divider serves the dual purposes of squaring the duty cycle of the VCO output and scaling up the VCO
frequency into the 500MHz to 1000MHz range to minimize jitter. This is also referred to as the V-Divider.

CLKOK Divider
The CLKOK divider acts as a source for the global clock nets. This is also referred to as the K-Divider. It divides the
CLKOP or CLKOS signal (user selectable) of the PLL by the value of the divider to produce lower frequency clock.

CLKOK2 Divider
The CLKOK2 divider always works off the CLKOP signal and has a fixed value of 3. The CLKOK2 signal can be
used for generating 140 MHz from 420 MHz to support SPI4.2 or for other uses. The first rising edge of CLKOK2 is
aligned to the first falling edge of CLKOP (after reset) and the falling edge of CLKOK2 is aligned to the third rising
edge of CLKOP. This will show up as a skew between CLKOP and CLKOK equal to one-half of the CLKOP period.
CLKOK2 is available to be routed as a primary clock.

Phase Adjustment and Duty Cycle Select (Static Mode)
Users can program CLKOS with Phase and Duty Cycle options. Phase adjustment can be done in 22.5° steps. The
duty cycle resolution is 1/16th of a period except 1/16th, 15/16th and 16/16th duty cycle options, which are not sup-
ported to avoid minimum pulse violation.

Dynamic Phase Adjustment (DPHASE) and Dynamic Duty Cycle (DDUTY) Select
The Phase Adjustment and Duty Cycle Select can be controlled in dynamic mode. When this mode is selected,
both the Phase Adjustment and Duty Cycle Select must be in dynamic mode. If only one of the features is to be
used in dynamic mode, users can manually set the other control inputs to the fixed logic levels of their choice.

Duty Trim Adjustment
With the LatticeECP3 device family, the duty cycle can be fine-tuned with the Duty Trim Adjustment.

Fine Delay Adjust
This optional feature is controlled by the input port, WRDEL. See information on the WRDEL input in the next sec-
tion of this document.

www.latticesemi.com/dynamic/view_document.cfm?document_id=31998
www.latticesemi.com/dynamic/view_document.cfm?document_id=31998

10-11

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

PLL Inputs and Outputs
CLKI Input
The CLKI signal is the reference clock for the PLL. It must conform to the specifications in the LatticeECP3 Family
Data Sheet in order for the PLL to operate correctly. The CLKI can be sourced from a dedicated dual-purpose pin
or from routing. Please note that it is not recommended to use a DCS output as a clock source to this input as a
loss of PLL lock can occur. When using PLL with high speed DDR interfaces, CLKI must be connected to a dedi-
cated clock pin. Refer to TN1180, LatticeECP3 High-Speed I/O Interface for details.

RST Input
The PLL reset occurs under two conditions. First, at power-up, the internal power-up reset signal from the configu-
ration block resets the PLL. Second, the user-controlled PLL reset signal RST, provided as part of the PLL module,
can be driven by an internally generated reset function or an external pin. This RST signal resets all internal PLL
counters, flip-flops (including the M, N, V, K and CLKOK2 Dividers) and the charge pump. When RST goes inactive,
the PLL will start the lock-in process, and will take tLOCK time to complete the PLL lock. Figure 10-8 shows the tim-
ing diagram of the RST input. Figure 10-9 shows the timing relationship between the RST input and the CLKI
divider output. RST is active high. The RST signal is optional; if unused, tie the input LOW. RST asserts asynchro-
nously and deasserts synchronously.

Figure 10-8. RST Input Timing Diagram

Figure 10-9. RST Input and CLKI Divider Output Timing Diagram (Example: CLKI_DIV = 4)

tLOCK

tRST

PLL_RST

LOCK

1.5 nS min.

t

RST

CLKI

1 cycleCLKI Divider Output

RSTREC

www.latticesemi.com/dynamic/view_document.cfm?document_id=31998
www.latticesemi.com/dynamic/view_document.cfm?document_id=31998
www.latticesemi.com/dynamic/view_document.cfm?document_id=32320

10-12

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

RSTK Input
RSTK is the reset input for the K-Divider (refer to Figure 10-10). This K-Divider reset is used to synchronize the K-
Divider output clock to the input clock. LatticeECP3 has an optional gearbox in the I/O cell for both outputs and
inputs. The K-Divider reset is useful for the gearbox implementation. RSTK is active high.

Figure 10-10. RSTK Input and CLKOK Divider Output Timing Diagram (Example: CLKOK_DIV = 4)

CLKFB Input
The feedback signal to the PLL, which is fed through the feedback divider, can be derived from the Primary Clock
net (CLKOP), a preferred pin, directly from the CLKOP divider or from general routing. External feedback allows the
designer to compensate for board-level clock alignment. Please note it is not recommended to use a DCS output
as a clock source to this input as a loss of PLL lock can occur.

CLKOP Output
The sysCLOCK PLL main clock output, CLKOP, is a signal available for selection as a primary clock.

CLKOS Output with Phase and Duty Cycle Select
The sysCLOCK PLL auxiliary clock output, CLKOS, is a signal available for selection as a primary clock. The
CLKOS is used when phase shift and/or duty cycle adjustment is desired. The programmable phase shift allows for
different phase in increments of 22.5°. The duty select feature provides duty select in 1/16th of the clock period.
This feature is also supported in Dynamic Control Mode.

CLKOK Output with Lower Frequency
The CLKOK is used when a lower frequency is desired. It is a signal available for selection as a primary clock.

CLKOK2 Output
The CLKOK2 divider always works off the CLKOP signal and has a fixed value of 3. The CLKOK2 signal can be
used for generating 140 MHz from 420 MHz to support SPI4.2 or for other uses. The first rising edge of CLKOK2 is
aligned to the first falling edge of CLKOP (after reset) and the falling edge of CLKOK2 is aligned to the third rising
edge of CLKOP. This will show up as a skew between CLKOP and CLKOK equal to one-half of the CLKOP period.
CLKOK2 is available to be routed as a primary clock.

LOCK Output
The LOCK output provides information about the status of the PLL. After the device is powered up and the input
clock is valid, the PLL will achieve lock within the specified lock time. Once lock is achieved, the PLL lock signal will
be asserted. If, during operation, the input clock or feedback signals to the PLL become invalid, the PLL will lose
lock. However, when the input clock completely stops, the LOCK output will remain in its last state, since it is inter-
nally registered by this clock. It is recommended to assert PLL RST to re-synchronize the PLL to the reference
clock. The LOCK signal is available to the FPGA routing to implement generation of RST. ModelSim® simulation
models take two to four reference clock cycles from RST release to LOCK high.

RSTK

CLKI

1 cycleCLKOK Divider Output

tRSTREC

10-13

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Dynamic Phase and Dynamic Duty Cycle Adjustment
The DPHASE[3:0] port is used with the Dynamic Phase Adjustment feature to allow the user to connect a control
signal to the PLL. The DDUTY[3:0] port is used with the Dynamic Duty Adjustment feature to allow the user to con-
nect a control signal to the PLL. The DPHASE and DDUTY ports are listed in Table 10-3.

The Dynamic Phase and Dynamic Duty Cycle Adjustment features will be discussed in more detail in later sections
of this document.

Table 10-3. Dynamic Phase and Duty Cycle Adjust Ports

Figure 10-11. Example of Dynamic Phase Adjustment with a Fixed Duty Cycle of 3/16th of a Period

Port Name I/O Description

DPHASE[3:0] I Dynamic Phase Adjust inputs

DDUTY[3:0] I Dynamic Duty Cycle Adjust inputs

DPHASE[3]

DPHASE[2]

DPHASE[1]

DPHASE[0]

DPAMODE PLL

DDUTY[3]

DDUTY[2]

DDUTY[1]

DDUTY[0]

DPHASE[3:0]

10-14

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Dynamic Phase Adjustment/Duty Cycle Select
Phase Adjustment settings are described in Table 10-4.

Table 10-4. Phase Adjustment Settings

Fine Delay Ports
When selecting “Dynamic Mode" and enabling CLKOS, the FINEDELB0-3 ports appear. These ports allow the user
to lag the CLKOS output clock with respect to the feedback clock in increments of tPA * FINEDELB(0:3). The tPA val-
ues are located in the LatticeECP3 Family Data Sheet.

The FINEDELA port is enabled with the FINEDELA checkbox on the GUI. This port allows you to push CLKOS
ahead of the feedback clock by ~70 ps. This signal is an active high pulse.

DPHASE[3:0] Phase (°)

0000 0

0001 22.5

0010 45

0011 67.5

0100 90

0101 112.5

0110 135

0111 157.5

1000 180

1001 202.5

1010 225

1011 247.5

1100 270

1101 292.5

1110 315

1111 337.5

www.latticesemi.com/dynamic/view_document.cfm?document_id=31998

10-15

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

LatticeECP3 PLL Modules
When the user creates a PLL module using IPexpress, the module will consist of a wrapper around the PLL library
element and any additional logic required for the module. Figure 10-12 is a diagram of a typical PLL module. The
module port names can be different than the library element is some cases. The user will see the module port
names in the IPexpress window and also in the source code file for the generated module. These are the ports that
will be connected in the user's design. IPexpress also creates an instantiation template file that shows the user how
to instantiate the PLL module in their design. The user can import the *.LPC file (in ispLEVER™, or *.IPX in Dia-
mond) into their project or the generated source code file.

Figure 10-12. LatticeECP3 Typical PLL Module Generated by IPexpress

The PLL module shown in Figure 10-12 represents an example where the user has chosen to use the CLKOP and
CLKOS ports, with a PLL reset signal, PLL lock signal, and dynamic phase and dynamic duty cycle. It also uses
CLKOP feedback so the software will connect the CLKOP signal to the CLKFB port and use the primary clock tree
to route this signal. The user would connect their signals to the CLKI, RST, DPHASE[3:0], DDUTY[3:0], CLKOP,
CLKOS, and LOCK signals.

LatticeECP3 PLL Library Definition
One PLL library element is used for LatticeECP3 PLL implementation. Figure 10-13 shows the LatticeECP3 PLL
library symbols.

Figure 10-13. LatticeECP3 PLL Library Symbol

EPLLD Design Migration from LatticeECP2 to LatticeECP3
The EPLLD generated for LatticeECP2 can be used with minor changes. If the configuration does not include
Dynamic Phase and Duty Options, the migration is fully supported. If Dynamic Phase and Duty Options are
included, the user must tie the DPAMODE port to ground.

RST CLKOP
RSTK CLKOS
CLKI CLKOK
CLKFB
WRDEL LOCK
FDA[3:0] CLKINTFB
DRPAI[3:0]
DFPAI[3:0]

Additional
Logic

RST

CLKI

DPHASE[3:0]

CLKOP
CLKOS

LOCK

EHXPLLF

DDUTY[3:0]

EHXPLLF

RST
RSTK
CLKI
CLKFB
WRDEL
FDA[3:0]
DRPAI[3:0]
DFPAI[3:0]

CLKOP
CLKOK

CLKOK2
CLKOS

LOCK

CLKINTFB

10-16

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Dynamic Phase/Duty Mode
This mode sets both Dynamic Phase Adjustment and Dynamic Duty Select at the same time. There are two
modes, “Dynamic Phase and Dynamic Duty” and “Dynamic Phase and 50% Duty”.

• Dynamic Phase and 50% Duty
This mode allows users to set up Dynamic Phase inputs only. The 50% Duty Cycle is handled internally by the
ispLEVER software. The DDUTY[3:0] ports are user-transparent in this mode.

• Dynamic Phase and Dynamic Duty
This mode allows designers to use both DDPHASE[3:0] and DDUTY[3:0] ports to input dynamic values.

To use Dynamic Phase Adjustment with a fixed duty cycle other than a 50%, simply set the DDUTY[3:0] inputs to
the desired duty cycle value. Figure 10-11 illustrates an example circuit.

Example: Assume a design uses dynamic phase adjustment and a fixed duty cycle select and the desired duty
cycle in 3/16th of a period. The setup should be as shown in Figure 10-11.

Duty Cycle Select settings are described in Table 10-5.

Table 10-5. Duty Cycle Select Settings

DDUTY[3:0]
Duty Cycle

(1/16th of a Period) Comment

0000 0 Not Supported

0001 1 Not Supported

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15 Not Supported

Note: PHASE/DUTY_CTNL is selected in the GUI ‘PLL Phase & Duty Options’ box and if it is set to ‘Dynamic
Mode’, then both DPHASE[3:0] and DDUTY[3:0] inputs must be provided. If one of these inputs is a fixed value,
the inputs must be tied to the desired fixed logic levels.

10-17

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

PLL Usage in IPexpress
IPexpress is used to create and configure a PLL. The graphical user interface is used to select parameters for the
PLL. The result is an HDL model to be used in the simulation and synthesis flow.

Figure 10-14 shows the main window when PLL is selected. The only entry required in this window is the module
name. Other entries are set to the project settings. Users may change these entries, if desired. After entering the
module name of choice, clicking on Customize will open the Configuration Tab window as shown in Figure 10-15.

Figure 10-14. ispLEVER IPexpress Main Window (see Appendix C Figure 10-40 for Diamond Equivalent)

Configuration Tab
The Configuration Tab lists all user accessible attributes with default values set. Upon completion, clicking Gener-
ate will generate source and constraint files. Users may choose to use the *.LPC file (for ispLEVER, or *.IPX file for
Diamond) to load parameters.

Configuration Modes
There are two modes that can be used to configure the PLL in the Configuration Tab, Frequency Mode and Divider
Mode.

Frequency Mode: In this mode, the user enters input and output clock frequencies and the software calculates the
divider settings. If the output frequency entered is not achievable the nearest frequency will be displayed in the
‘Actual’ text box. After input and output frequencies are entered, clicking the Calculate button will display the
divider values.

10-18

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Divider Mode: In this mode, the user sets the divider settings with input frequency. Users must choose the CLKOP
Divider value to maximize the fVCO and achieve optimum PLL performance. After input frequency and divider set-
tings are set, clicking the Calculate button will display the frequencies. Figure 10-15 shows the Configuration Tab.

Figure 10-15. ispLEVER LatticeECP3 PLL Configuration Tab (see Appendix C Figure 10-41 for Diamond
Equivalent)

10-19

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Table 10-6 describes the user parameters in the IPexpress GUI and their usage.

Table 10-6. User Parameters in the IPexpress GUI

User Parameters Description Range

Frequency Mode User desired CLKI and CLKOP frequency ON/OFF

Divider Mode User desired CLKI frequency and dividers settings ON/OFF

CLKI
Frequency Input Clock frequency 2 MHz to 500 MHz

Divider Input Clock Divider Setting (Divider Mode) 1 to 64

CLKFB
Feedback Mode Feedback Mode Internal, CLKOP,

CLKOS, User Clock

Divider Feedback Clock Divider Setting (Divider Mode) 1 to 64

PLL Phase & Duty Options
Static Mode CLKOS Phase/Duty in Static Mode ON/OFF

Dynamic Mode CLKOS Dynamic Mode Phase/Duty Setting ON/OFF

CLKOP

Bypass Bypass PLL: CLKOP = CLKI ON/OFF

Desired Frequency User enters desired CLKOP frequency 4 MHz to
500 MHz

Divider CLKOP Divider Setting (Divider Mode) 2, 4, 8, 16, 32, 48, 64,
80, 96, 112, 128

Tolerance CLKOP tolerance users can tolerate 0.0, 0.1, 0.2, 0.5, 1.0,
2.0, 5.0, 10.0

Actual Frequency Actual frequency achievable. Read only —

Rising Rising Edge Trim ON/OFF

Falling Falling Edge Trim ON/OFF

Delay Multiplier Number of delay steps 0 to 7

CLKOS

Enable Enable CLKOS output clock ON/OFF

Bypass Bypass PLL: CLKOS = CLKI ON/OFF

Phase Shift CLKOS Static Phase Shift 0°, 22.5°, 45°..337.5°

Duty Cycle CLKOS Static Duty Cycle 2 to 14

Phase and Duty
Options

Dynamic Phase with 50% Duty ON/OFF

Dynamic Phase with Dynamic Duty ON/OFF

Rising Rising Edge Trim ON/OFF

Falling Falling Edge Trim ON/OFF

Delay Multiplier Number of Delay steps 0 to 3

CLKOK

Enable Enable CLKOS output clock ON/OFF

Bypass Bypass PLL: CLKOK = CLKI ON/OFF

Desired Frequency User enters desired CLKOK frequency 0.03125 to 250 MHz

CLKOK input Select input source for CLKOK CLKOP/CLKOS

Frequency User enters desired CLKOK frequency 31.25 kHz to 250 MHz

Divider CLKOK Divider Setting 2, 4, 6, ... 126, 128

Tolerance CLKOK tolerance users can tolerate 0.0, 0.1, 0.2, 0.5, 1.0,
2.0, 5.0, 10.0

Actual Frequency Actual frequency achievable. Read only —

CLKOK2 Enable Enable CLKOK2 output clock ON/OFF

Provide PLL Reset Provide PLL Reset Port (RESET) ON/OFF

Provide CLKOK Divide Reset Provide CLKOK Reset Port (RSTK) ON/OFF

Provide FINDELA Port Provide CLKOS Fine Delay Port (WRDEL) ON/OFF

Import LPC to ispLEVER Project Import .lpc file to ispLEVER project ON/OFF

Import IPX into Diamond Project Import .lpc file to Diamond project ON/OFF

10-20

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

PLL Modes of Operation
PLLs have many uses within a logic design. The two most popular are Clock Injection Removal and Clock Phase
Adjustment. These two modes of operation are described below.

PLL Clock Injection Removal
In this mode the PLL is used to reduce clock injection delay. Clock injection delay is the delay from the input pin of
the device to a destination element such as a flip-flop. The phase detector of the PLL aligns the CLKI with CLKFB.
If the CLKFB signal comes from the clock tree (CLKOP), then the PLL delay and the clock tree delay is removed.
Figure 10-16 Illustrates an example block diagram and waveform.

Figure 10-16. Clock Injection Delay Removal Application

PLL Clock Phase Adjustment
Refer to Figure 10-17. In this mode the PLL is used to create fixed phase relationships in 22.5° increments. Creat-
ing fixed phase relationships is useful for forward clock interfaces where a specific relationship between clock and
data is required.

The fixed phase relationship can be used between CLKI and CLKOS or between CLKOP and CLKOS.

Figure 10-17. CLKOS Phase Adjustment from CLKOP

CLKI

Clock at
Clock Tree
without PLL

CLKOP/CLKOS
at Clock Tree
with PLL

Clock Injection Delay

PLL

CLKI

CLKFB

CLKOP

Clock Tree

CLKI

CLKOP

CLKOS with 90°
Phase Shift

PLL

CLKI

CLKFB

CLKOP

CLKOS

10-21

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

IPexpress Output
There are two IPexpress outputs that are important for use in the design. The first is the <module_name>.[v|vhd]
file. This is the user-named module that was generated by the tool to be used in both synthesis and simulation
flows. The second is a template file, <module_name>_tmpl.[v|vhd]. This file contains a sample instantiation of the
module. This file is provided for the user to copy/paste the instance and is not intended to be used in the synthesis
or simulation flows directly.

For the PLL, IPexpress sets attributes in the HDL module that are specific to the data rate selected. Although these
attributes can be easily changed, they should only be modified by regenerating the package in IPexpress so that
the performance of the PLL is maintained. After the map stage in the design flow, FREQUENCY preferences will be
included in the preference file to automatically constrain the clocks produced from the PLL.

Notes on PLL Usage
The GPLL CLKOP should be used as the feedback source to optimize PLL performance.

Most designers use PLLs for clock tree injection removal mode and the CLKOP should be assigned to a primary
clock. This is done automatically by the software unless otherwise specified by the user.

CLKOP can route only to CLK0 to CLK5, while CLKOS/CLKOK can route to all primary clocks (CLK0 TO CLK7).
When using PLL with high speed DDR interfaces, CLKI must be connected to a dedicated clock pin. The outputs
CLKOP and CLKOS used for DDR Interface must be assigned to dedicated clock tree (primary or edge clock).
Refer to TN1180, LatticeECP3 High-Speed I/O Interface for details.

sysCLOCK DLL
The LatticeECP3 DLL provides features such as clock injection delay removal, time reference delay (90o phase
delay), and output phase adjustment. The DLL performs clock manipulation by adding delay to the CLKI input sig-
nal to create specific phase relationships. There are two types of outputs of the DLL. The first are clock signals sim-
ilar to the PLL CLKOP and CLKOS. The other type of output is a delay control vector (DCNTL[5:0]). The delay
control vector is connected to a Slave Delay Line (DLLDEL) element. Figure 10-18 provides a block diagram of the
LatticeECP3 DLL.

Figure 10-18. LatticeECP3 DLL Block Diagram

CLKOP

CLKOS

LOCKCLKFB

CLKI

ALUHOLD

DCNTL[5:0]*

GRAYO[5:0]

INCO

UDDCNTL

Phase
Detector

Delay3

Delay2

Delay1

Delay0

Delay4

Reference

Feedback

6

÷4
÷2

÷4
÷2

RSTN

(from routing
 or external pin)

from CLKOP (DLL
internal), from clock net
(CLKOP) or from a user

clock (pin or logic)

Arithmetic
Logic Unit

Lock
Detect

Digital
Control
Output

Delay Chain

Output
Muxes

Duty
Cycle
50%

Duty
Cycle
50%

INCI
GRAYI[5:0]

DIFF

* This signal is not user accessible. This can only be used to feed the slave delay line.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320

10-22

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Both clock injection delay removal and output phase adjustment use only the clock outputs of the DLL. Time refer-
ence delay modes use the delay control vector output. Specific examples of these features are discussed later in
this document.

DLL Overview
The LatticeECP3 DLL is created and configured by IPexpress. The following is a list of port names and descriptions
for the DLL. There are two library elements used to implement the DLL: CIDDLLB (Clock Injection Delay), and
TRDDLLB (Time Reference Delay). IPexpress will wrap one of these library elements to create a customized DLL
module based on user selections.

DLL Inputs and Outputs
CLKI Input
The CLKI signal is the reference clock for the DLL. The CLKI input can be sourced from any type of FPGA routing
and pin. The DLL CLKI input has a preferred pin per DLL which provides the lowest latency and best case perfor-
mance.

CLKFB Input
The CLKFB input is available only if the user chooses to use a user clock signal for the feedback. If internal feed-
back or CLKOS/CLKOP is used for the feedback, this connection will be made inside the module. In Clock Injection
Delay Removal mode, the DLL will align the input clock phase with the feedback clock phase by delaying the input
clock.

CLKOP Output
An output of the DLL based on the CLKI rate. The CLKOP output can drive primary and edge clock routing.

CLKOS Output
An output of the PLL based on the CLKI rate which can be divided and/or phase shifted. The CLKOS output can
drive the primary and edge clock routing.

DCNTL[5:0] Output
This output of the DLL is used to delay a signal by a specific amount. The DCNTL[5:0] vector can only connect to a
Slave Delay Line element.

DIFF Output
Active high difference indicator. Active when DCNTL output is different than the internal setting and an update is
needed.

UDDCNTL Input
This input is used to enable or disable updating of the DCNTL[5:0]. To ensure that the signal is captured by the syn-
chronizer in the DLL block, it must be driven high for a time equal to at least two clock cycles when an update is
required. If the signal is driven high and held in that state, the DCNTL[5:0] outputs are continuously updated.

ALUHOLD Input
This active high input stops the DLL from adding and subtracting delays to the CLKI signal. The DCNTL[5:0],
CLKOP, and CLKOS outputs will still be valid, but will not change from the current delay setting.

LOCK Output
Active high lock indicator output. The LOCK output will be high when the CLKI and CLKFB signal are in phase. If
the CLKI input stops the LOCK output will remain asserted. Since the clock is stopped, there is no clock to de-
assert the LOCK output. Note that this is different from the operation of the PLL, where the VCO continues to run
when the input clock stops. The LOCK output transitions are glitch-free.

RSTN
Active low reset input to reset the DLL. The DLL can optionally be reset by the GSRN as well. It is recommended
that if the DLL requires a reset, the reset should not be the same as the FPGA logic reset. Typically, logic requires
that a clock is running during a reset condition. If the data path reset also resets the DLL, the source of the logic

10-23

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

clock will stop and this may cause problems in the logic. RSTN asserts asynchronously and deasserts synchro-
nously.

GRAYO Output
Gray-coded digital control bus to other DLLs. This bus, together with the GRAYI bus and INCO and INCI signals,
enables DLLs to be safely cascaded. The buses are Gray-coded to prevent glitches in the transfer of the control
signals. The INCO / INCI signal accompanies the GRAYO / GRAYI bus, and indicates when an incremental adjust-
ment is being passed.

GRAYI Input
Gray-coded digital control bus from another DLL in time reference mode. See description of the GRAYO output bus,
above.

INCO Output
Active high incremental indicator to other DLLs. See description of the GRAYO output bus, above.

INCI Input
Active high incremental indicator from another DLL. See description of the GRAYO output bus, above.

DLL Attributes
The LatticeECP3 DLL utilizes several attributes that allow the configuration of the DLL through source constraints,
IPexpress and preference files. The following section details these attributes and their usage.

DLL Lock on Divide by 2 or Divide by 4 CLKOS Output
The LatticeECP3 DLL allows ‘divide by 2’ or ‘divide by 4’ CLKOS outputs. Two optional ‘divide by 2’ and ‘divide by
4’ blocks are placed at the CLKI input as well as the CLKOS and this enables the use of divided CLKOS in the DLL
feedback path. This allows the DLL to perform clock injection removal on a ‘divide by 2’ or ‘divide by 4’ clock, which
is useful for DDRX2 and DDRX4 modes of I/O buffer operation.

When this optional clock divider is used only in the CLKOS output path, it allows the DLL to output two time-aligned
clocks at different frequencies. When the divider is set to divide by 2 or divide by 4, a ‘dummy’ delay is inserted in
the CLKOP output path to match the clock to Q delay of the CLKOS divider.

DLL Lock Time Control
The DLL will lock when the CLKI and CLKFB phases are aligned. In a simulation environment, the lock time is fixed
to 100µs (default). This value can be changed through an HDL parameter or preference (for the back annotation
simulation). The DLL contains a parameter named LOCK_DELAY which accepts an integer value for the total time
in µs until the lock output goes high. Below is an example of how to set this value for front-end simulation.

Verilog:

defparam mydll.mypll_0_0.LOCK_DELAY=500;
mydll dll_inst(.CLKI(clkin), .CLKOP(clk1), .CLKOS(clk2),

VHDL:

Not supported. For back annotation simulation LOCK_DELAY needs to be set in the preference file. Below is an
example for the PLL.

ASIC “pll/pll_0_0” TYPE “EHXPLLF” LOCK_DELAY=200;

DLL Library Symbols

10-24

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Figure 10-19. DLL Library Symbols

DLL Library Definitions
The Lattice library contains library elements to allow designers to utilize the DLL. These library elements use the
DLL attributes defined in the “DLL Attributes” section.

The two modes of operation are presented as library elements as listed below.

Table 10-7. DLL Library Elements

DLL Library Element I/Os
Table 10-8. DLL Library Element I/O Descriptions

Library Element
Name Mode of Operation Description

TRDLLB Time Reference Delay DLL This mode generates four phases of the clock, 0°, 90°, 180°, 270°, along
with the control setting used to generate these phases.

CIDDLLB Clock Injection Delay DLL
(Four Delay Cell Mode)

This mode removes the clock tree delay, aligning the external feedback
clock to the reference clock. It has a single output coming from the fourth
delay block.

Signal I/O Description

CLKI I Clock input pin from dedicated clock input pin, other I/O or logic block.

CLKFB I Clock feedback input pin from dedicated feedback input pin, internal feedback, other I/O or
logic block. This signal is not user selectable.

RSTN I Active low synchronous reset. From dedicated pin or internal node.

ALUHOLD I “1” freezes the ALU. For TRDLLA and CIDDLLA.

UDDCNTL I Active high synchronous enable signal from CIB for updating digital control to PIC delay. It
must be driven high at least two clock cycles.

DCNTL[5:0] O Digital delay control code signals.

CLKOP O The primary clock output for all possible modes.

CLKOS O The secondary clock output with finer phase shift and/or division by 2 or by 4.

LOCK O Active high phase lock indicator. Lock means the reference and feedback clocks are in phase.

Note: Refer to the LatticeECP3 Family Data Sheet for frequency specifications.

TRDLLB

CLKI
RSTN
ALUHOLD
UDDCNTL

CLKOP
CLKOS

LOCK
DCNTL

CIDDLLB

CLKI
CLKFB
RSTN
ALUHOLD

CLKOP
CLKOS

LOCK

www.latticesemi.com/dynamic/view_document.cfm?document_id=31998

10-25

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

DLL Modes of Operation
Clock Injection Removal Mode (CIDDLLB)
The DLL can be used to reduce clock injection delay (CIDDLLB). Clock injection delay is the delay from the input
pin of the device to a destination element such as a flip-flop. The DLL will add delay to the CLKI input to align CLKI
to CLKFB. If the CLKFB signal comes from the clock tree (CLKOP, CLKOS) then the delay of the DLL and the clock
tree will be removed from the overall clock path. Figure 10-20 shows a circuit example and waveform.

Figure 10-20. Clock Injection Delay Removal via DLL

Clock injection removal mode can also provide a DCNTL port. When using the DCNTL, the DLL delay will be lim-
ited to the range of the DCNTL vector. Therefore, IPexpress will restrict the CLKI rate from 300MHz to 500MHz.

Time Reference Delay Mode (TRDLLB: 90-Degree Phase Delay)
The Time Reference Delay (TRDDLLB) mode of the DLL is used to calculate 90 degrees of delay to be placed on
the DCNTL vector. This is a useful mode in delaying a clock 90 degrees for use in clocking a DDR type interface.

Figure 10-21 provides a circuit example of this mode.

Figure 10-21. Time Reference Delay Circuit Example

In this mode, CLKI accepts a clock input. The DLL produces a DCNTL vector that will delay an input signal by 90
degrees of a full period of the CLKI signal. This DCNTL vector can then be connected to a Slave Delay Line (DLL-
DELB) to delay the signal by 90 degrees of the full period of CLKI.

CLKI

Clock at
CLOCK TREE
without DLL

CLKOP/CLKOS
at CLOCK TREE
with DLL

Clock Injection Delay

CIDDLL

CLKI

CLKFB

CLKOP

CLOCK TREE

Delay

CLK

Data

DLLDEL

TRDLL

DCNTL

D Q

ECLK

ECLK Injection

10-26

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

DLL Usage in IPexpress
IPexpress is used to create and configure a DLL. The IPexpress graphical user interface, shown in Figure 10-13,
allows users to select parameters for the DLL. Parameters are described in Table 10-9. The result is an HDL model
to be used in the simulation and synthesis flow.

Figure 10-22. ispLEVER LatticeECP3 IPexpress DLL Configuration Tab (see Figure 10-42 for Diamond
Equivalent)

10-27

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Table 10-9. User Parameters in the IPexpress DLL GUI

PLL/DLL Cascading
It is possible to connect several arrangements of PLLs and DLLs. There are three possible cascading schemes:

• PLL to PLL

• PLL to DLL

• DLL to DLL

It is not possible to connect the DLL to a PLL. The DLL produces abrupt changes on its output clocks when chang-
ing delay settings. The PLL sees this as radical phase changes that prevent the PLL from locking correctly. A DLL
in Static Delay Mode can, however, be used to set fine phase delays, and it is generally best to do this with the DLL
placed in front of the PLL.

IPexpress Output
There are two outputs of IPexpress that are important for use in the design. The first is the <module_name>.[v|vhd]
file. This is the user-named module that was generated by the tool to be used in both synthesis and simulation
flows. The second file is a template file <module_name>_tmpl.[v|vhd]. This file contains a sample instantiation of
the module. This file is only provided for the user to copy/paste the instance and is not intended to be used in the
synthesis or simulation flows directly.

For the PLL/DLL, IPexpress sets attributes in the HDL module created that are specific to the data rate selected.
Although these attributes can easily be changed, they should only be modified by re-running the GUI so that the
performance of the PLL/DLL is maintained. After the map stage in the design flow, FREQUENCY preferences will
be included in the preference file to automatically constrain the clocks produced from the PLL/DLL.

User Parameter Description Range Default

DLL Usage Mode User desired operation mode
Time Reference Delay,
Clock Injection Delay

Removal

Clock Injection Delay
Removal

CLKI Frequency (MHz) Input CLKI frequency 133-500 MHz 133 MHz

CLKOS Divider Output CLKOS Divider Setting 1, 2, 4 1

CLKOS Phase Shift (degrees) Output CLKOS Phase Shift
Setting 0° to 360° in 11° steps 0°

CLKFB Feedback Mode Feedback Clock mode
(source of feedback) CLKOP, CLKOS, User Clock CLKOP

CLKFB Frequency
Feedback Clock source 
frequency (CLKI divided by 1,
2 or 4)

CLKI, CLKI/2, CLKI/4 CLKI

Provide RSTN Port Provide reset port (active-LO) ON/OFF ON

Provide DIFF Port Provide DIFF port ON/OFF OFF

Provide GRAYO Port
(Time Ref Delay mode only)

These inputs/outputs are
used to safely cascade
PLLs/DLLs. Refer to text for
details.

ON/OFF OFF

Provide GRAYI Port
(Clk Inj Dly Rmvl mode only) ON/OFF OFF

Provide INCO Port
(Time Ref Delay mode only)

These inputs/outputs are
used to safely cascade
PLLs/DLLs. Refer to text for
details.

ON/OFF OFF

Provide INCI Port
(Clk Inj Dly Rmvl mode only) ON/OFF OFF

Provide DCNTL Port Provide Delay Control Vector
output port ON/OFF OFF

Import PIX to Diamond Project
(Diamond only) Import .IPX file to project YES/NO NO

10-28

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

DLLDEL (Slave Delay Line)
The Slave Delay line is designed to generate the desired delay in DDR/SPI4 applications. The delay control inputs
(DCNTL[5:0]) are fed from the general purpose DLL outputs. The library element definitions are described in
Figure 10-23 and Table 10-10.

Figure 10-23. DLLDELB Library Symbol

Table 10-10. DLLDELB I/O

DLLDELB Declaration in VHDL Source Code
COMPONENT DLLDELB

PORT (
CLKI :IN std_logic;
DCNTL0 :IN std_logic;
DCNTL1 :IN std_logic;
DCNTL2 :IN std_logic;
DCNTL3 :IN std_logic;
DCNTL4 :IN std_logic;
DCNTL5 :IN std_logic;
CLKO :OUT std_logic
);

END COMPONENT;

begin
DLLDELBinst0: DLLDELB1

PORT MAP (
CLKI => clkisig,
DCNTL0 => dcntl0sig,
DCNTL1 => dcntl1sig,
DCNTL2 => dcntl2sig,
DCNTL3 => dcntl3sig,
DCNTL4 => dcntl4sig,
DCNTL5 => dcntl5sig,
CLKO => clkosig
);

end

Name I/O Description

CLKI I Clock Input

DCNTL[5:0] I Delay Control Bits

CLKO O Clock Output

DLLDELB

CLKOCLKI
DCNTL0
DCNTL1
DCNTL2
DCNTL3
DCLTL4
DCNTL5

10-29

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

DLLDELB Usage with TRDLLB - Verilog - Example
Note: DLL0(TRDLLB) must be generated by IPexpress as a sub-module

module ddldel_top (rst,d,clkin,clkout,aluhold,uddcntl,q);

input rst,d,clkin,aluhold,uddcntl;
output clkout,q;

wire [5:0]DCntl_int;
reg qint;

DLL0 dllinst0 (.clk(clkin), .aluhold(aluhold), .uddcntl(uddcntl), .clkop(), .clkos(),
 .dcntl(DCntl_int),.lock());

DLLDELB delinst0 (.CLKI(clkin),.DCNTL0(DCntl_int[0]),.DCNTL1(DCntl_int[1]),
 .DCNTL2(DCntl_int[2]), .DCNTL3(DCntl_int[3]), .DCNTL4(DCntl_int[4]),
 .DCNTL5(DCntl_int[5]), .CLKO(clk90)); //synthesis syn_black_box

assign clkout = clk90;
assign q = qint;

always@(posedge clk90 or negedge rst)

if (~rst)
qint =1'b0;

else
qint = d;

endmodule

DLLDELB Application Example
Figure 10-24 shows an example DLLDEL application. As shown in the timing diagram, DLLDEL shifts the clock by
90 degrees to center both edges in the middle of data window.

10-30

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Figure 10-24. SPI4.2 and DDR Registers Interface Application

DQSDLL and DQSDEL
There is another combination of DLL and Slave Delay Line, DQSDLL and DQSDEL, in the LatticeECP3 device
family. This pair is similar in design and function to DLL and DLLDEL, but usage is limited to DDR implementation.
For additional information, see TN1180, LatticeECP3 High-Speed I/O Interface.

Data +
Injection Delay

90 O Shift +
Injection Delay

1.2 ns

CLK at Pin

Data at Pin

1.2 nS

FD: Fixed Delay
DD: Dynamic Delay
Users can select the delay setting in IPexpress.

Data

CLKDIV

E
C

LK
1

E
C

LK
2

DLL CLKOP

DLLDEL

DCNTL[8:0]

CLK

FD DD

Data/ CLK

Core
Logic

840 Mbps

420 MHz

840 Mbps/ 420 MHz

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320

10-31

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Clock Dividers (CLKDIV)
The clock divider divides the high-speed clock by 1, 2, 4 or 8. All the outputs have matched input to output delay.
CLKDIV can take as its input the edge clocks and the CLKOP of the PLL or DLL. The divided outputs drive the pri-
mary clock and are also available for general routing or secondary clocks. The clock dividers are used for providing
the low speed FPGA clocks for shift registers (x2, x4, x8) and DDR/SPI4 I/O logic interfaces.

CLKDIV Library Definition
Users can instantiate CLKDIV in the source code as defined in this section. Figure 10-25 and Tables 10-11 and 10-
12 describe the CLKDIVB definitions.

Figure 10-25. CLKDIV Library Symbol

Table 10-11. CLKDIVB Port Definition

Table 10-12. CLKDIVB Attribute Definition

Name Description

CLKI Clock Input

RST Reset Input, asynchronously forces all outputs low.

RELEASE Releases outputs synchronously to input clock.

CDIV1 Divided BY 1 Output

CDIV2 Divided BY 2 Output

CDIV4 Divided BY 4 Output

CDIV8 Divided BY 8 Output

Name Description Value Default

GSR GSR Enable ENABLED/DISABLED DISABLED

CLKDIVB

CDIV1

CDIV2

CDIV4

CDIV8

CLKI

RST

RELEASE

10-32

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

CLKDIV Declaration in VHDL Source Code
COMPONENT CLKDIVB
-- synthesis translate_off

GENERIC (
 GSR : in String);
-- synthesis translate_on
 PORT (
 CLKI,RST, RELEASE:IN std_logic;
 CDIV1, CDIV2, CDIV4, CDIV8:OUT std_logic);
END COMPONENT;

attribute GSR : string;
attribute GSR of CLKDIVinst0 : label is “DISABLED”;

begin

CLKDIVinst0: CLKDIVB
-- synthesis translate_off
 GENERIC MAP(

GSR => “disabled”
);

-- synthesis translate_on
PORT MAP(

 CLKI => CLKIsig,
RST => RSTsig,
RELEASE => RELEASEsig,

 CDIV1 => CDIV1sig,
CDIV2 => CDIV2sig,
CDIV4 => CDIV4sig,
CDIV8 => CDIV8sig
);

CLKDIV Usage with Verilog - Example
module clkdiv_top(RST,CLKI,RELEASE,CDIV1,CDIV2,CDIV4,CDIV8);

input CLKI,RST,RELEASE;
output CDIV1,CDIV2,CDIV4,CDIV8;

CLKDIVB CLKDIBinst0 (.RST(RST),.CLKI(CLKI),.RELEASE(RELEASE),
 .CDIV1(CDIV1),.CDIV2(CDIV2),.CDIV4(CDIV4),.CDIV8(CDIV8));

defparam CLKDIBint0.GSR = "DISABLED"

endmodule

10-33

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

CLKDIV Example Circuits
The clock divider (CLKDIV) can divide a clock by 2, 4 or 8 and drives a primary clock network. Clock dividers are
useful for providing the low speed FPGA clocks for I/O shift registers (x2, x4) and DDR (x2, x4) I/O logic interfaces.
Divide by 8 is provided for slow speed/low power operation.

To guarantee a synchronous transfer in the I/O logic, the CLKDIV input clock must be driven by an edge clock and
the output must drive a primary clock. In this case, they are phase matched.

It is especially useful to synchronously reset the I/O logic when Mux/DeMux gearing is used in order to synchronize
the entire data bus as shown in Figure 10-26. Using the low-skew characteristics of the edge clock routing a reset
can be provided to all bits of the data bus to synchronize the Mux/DeMux gearing.

Figure 10-26. CLKDIV Application Example

Reset Behavior
Figure 10-27 illustrates the asynchronous RST behavior.

Figure 10-27. CLKDIV Reset Behavior

CLKDIV

ECLK

Data
D Q

GEARING
(2x)

RST

Primary
Clock

8 16

CLKI

RST

CDIV1

CDIV2

CDIV4

CDIV8

RST asserted
asynchronously.
All clock outputs are
forced low. De-asserted RST is

registered.

After de-asserted RST is
registered all outputs start
toggling.

10-34

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Release Behavior
The port, “Release” is used to synchronize the all outputs after RST is de-asserted. Figure 10-28 illustrates the
release behavior.

Figure 10-28. CLKDIV Release Behavior

CLKDIV Inputs-to-Outputs Delay Matching
Figure 10-29. CLKDIV Inputs-to-Outputs Delay Matching

CLKI

RST

RELEASE

CDIV1

CDIV2

CDIV4

CDIV8

De-asserted RST
registered

Clock start counting
Release synchronizes

outputs

CLKI

CDIV1

CDIV2

CDIV4

CDIV8

10-35

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

DCS (Dynamic Clock Select)
DCS is a global clock buffer incorporating a smart multiplexer function that takes two independent input clock
sources and avoids glitches or runt pulses on the output clock, regardless of where the enable signal is toggled.
There are two DCSs for each quadrant.

The DCS inputs can be driven by the same signals that drive the non-DCS clocks. Some of the clocks have dedi-
cated connections to the DCS and do not have to go through a clock tree. Appendix A below shows the available
direct paths to the DCS inputs. The select input is driven by a signal from the general routing fabric. The outputs of
the DCS then reach primary clock distribution via the feedlines. Figure 10-30 shows the block diagram of the DCS.

When CLK6 or CLK7 is used as a primary clock and there is only one clock input to the DCS, the DCS is assigned
as a buffer mode by the software, but will still inject some delay into the net. In order to be glitchless, the DCS must
have both clock inputs switching. If one of the inputs is not switching, the DCS will not be able to switch.

Figure 10-30. DCS Library Symbol

DCS Library Definition
Table 10-13 defines the I/O ports of the DCS block. There are eight modes to select from. Table 10-14 describes
how each mode is configured.

Table 10-13. DCS I/O Definition

Table 10-14. DCS Modes of Operation

I/O Name Description

Input

SEL Input Clock Select

CLK0 Clock input 0

CLK1 Clock Input 1

Output DCSOUT Clock Output

Attribute Name Description

Output

ValueSEL=0 SEL=1

DCS MODE

Rising edge triggered, latched state is high CLK0 CLK1 POS

Falling edge triggered, latched state is low CLK0 CLK1 NEG

Sel is active high, Disabled output is low 0 CLK1 HIGH_LOW

Sel is active high, Disabled output is high 1 CLK1 HIGH_HIGH

Sel is active low, Disabled output is low CLK0 0 LOW_LOW

Sel is active low, Disabled output is high CLK0 1 LOW_HIGH

Buffer for CLK0 CLK0 CLK0 CLK0

Buffer for CLK1 CLK1 CLK1 CLK1

DCS

DCSOUT

CLK0

SEL

CLK1

10-36

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

DCS Timing Diagrams
Each mode performs a unique operation. The clock output timing is determined by input clocks and the edge of the
SEL signal. Figure 10-31 describes the timing of each mode.

Figure 10-31. Timing Diagrams by DCS MODE

CLK0

CLK1

SEL

DCSOUT

CLK0

CLK1

SEL

DCSOUT

SEL Falling edge:
- Wait for CLK1 falling edge,
 latch output & remain low
- Switch output at CLK0 falling edge

SEL Rising edge:
- Wait for CLK0 falling edge,
 latch output & remain low
- Switch output at CLK1 falling edge

SEL Falling edge:
- Wait for CLK1 rising edge,
 latch output & remain high
- Switch output at CLK0 rising edge

SEL Rising edge:
- Wait for CLK0 rising edge,
 latch output & remain high
- Switch output at CLK1 rising edge

DCS MODE = NEG

DCS MODE = POS

10-37

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Figure 10-32. Timing Diagrams by DCS MODE (Cont.)

CLK1

SEL

DCSOUT

- Switch low @CLK1 falling edge.
- If SEL is low, output stays low at on
 CLK1 rising edge. SEL must not
 change during setup prior to rising clock.

DCS MODE = HIGH_LOW

CLK0

SEL

DCSOUT

- Switch low @CLK0 falling edge.
- If SEL is high, output stays low at
 on CLK0 rising edge.

DCS MODE = LOW_LOW

CLK1

SEL

DCSOUT

- Switch high @CLK1 rising edge.
- If SEL is low, output stays low high
 on CLK1 falling edge.

DCS MODE = HIGH_HIGH

CLK0

SEL

DCSOUT

- Switch high @ CLK0 rising edge.
- If SEL is high, output stays high on
 CLK0 falling edge.

DCS MODE = LOW_HIGH

10-38

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

DCS Usage with VHDL - Example
COMPONENT DCS
-- synthesis translate_off
 GENERIC (

DCSMODE : string := “POS”
);

-- synthesis translate_on

 PORT (
CLK0 :IN std_logic ;
CLK1 :IN std_logic ;
SEL :IN std_logic ;
DCSOUT :OUT std_logic) ;

END COMPONENT;

 attribute DCSMODE : string;
 attribute DCSMODE of DCSinst0 : label is “POS”;

begin

DCSInst0: DCS
-- synthesis translate_off

 GENERIC MAP (
 DCSMODE => “POS”
);
-- synthesis translate_on

 PORT MAP (
SEL => clksel,
CLK0 => dcsclk0,
CLK1 => sysclk1,
DCSOUT => dcsclk
);

DCS Usage with Verilog - Example
module dcs(clk0,clk1,sel,dcsout);

input clk0, clk1, sel;
output dcsout;

DCS DCSInst0 (.SEL(sel),.CLK0(clk0),.CLK1(clk1),.DCSOUT(dcsout));
defparam DCSInst0.DCSMODE = "POS";

endmodule

Oscillator (OSCF)
There is a dedicated oscillator in the LatticeECP3 device whose output is made available for users.

The oscillator frequency output is routed through a divider which is used as an input clock to the clock tree. The
available outputs of the divider are shown in Table 10-15. The oscillator frequency output can be further divided by
internal logic (user logic) for lower frequencies, if desired. The oscillator is powered down when not in use.

The output of this oscillator is not a precision clock. It is intended as an extra clock that does not require accurate
clocking.

10-39

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Library Element: OSCF

Table 10-15. OSCE Port Definition

Table 10-16. OSCE Attribute Definition

OSC Library Symbol (OSCF)
Figure 10-33. OSC Symbol

OSC Usage with VHDL - Example
COMPONENT OSCF

PORT (OSC:OUT std_logic);

END COMPONENT;
begin
OSCInst0: OSCF

PORT MAP (OSC=> osc_int);

OSC Usage with Verilog - Example
module OSC_TOP(OSC_CLK);

output OSC_CLK;

OSCF OSCinst0 (.OSC(OSC_CLK));

defparam OSCinst0.NOM_FREQ = "5.4" ;

endmodule

Setting Clock Preferences
Designers can use clock preferences to implement clocks to the desired performance. Preferences can be set in
the ispLEVER Design Planner Spreadsheet View (or Diamond Spreadsheet View) or in preference files. Frequently
used preferences are described in Appendix C.

Power Supplies
Each PLL has its own power supply pin, VCCPLL.

I/O Name Description

Output OSC Oscillator Clock Output

User Attribute Attribute Name Value (MHz) Default Value

Nominal Frequency NOM_FREQ 2.5, 4.3, 5.4, 6.9, 8.1, 9.2, 10, 13, 15, 20, 26,
30, 34, 41, 45, 51, 55, 60, 130 2.5

OSCF

OSC

10-40

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

PLL/DLL Names and Preferred Pads
Table 10-17 lists the names and preferred pads for all PLLs and DLLs for each device size in the LatticeECP3 fam-
ily. To obtain the pin/ball associated with each pad, refer to the pinout table for the target device in the LatticeECP3
Family Data Sheet. Here is an example of a PLL locate preference:

LOCATE COMP “PLL_0/PLLInst_0” SITE “PLL_R35C70”;

Table 10-17. PLL/DLL Names and Preferred Pads

Pad IN_A Pad IN_B Pad FB_A Pad FB_B

LatticeECP3-17

LUM0_GDLLT DLL_R26C15 PL20A PL20B PL21A PL21B

RUM0_GDLLT DLL_R26C42 PR20A PR20B PR21A PR21B

LUM0_GPLLT PLL_R26C5 PL26E_C PL26E_D PL26E_A PL26E_B

RUM0_GPLLT PLL_R26C52 PR26E_C PR26E_D — —

LatticeECP3-35

LUM0_GDLLT DLL_R35C15 PL29A PL29B PL30A PL30B

RUM0_GDLLT DLL_R35C60 PR29A PR29B PR30A PR30B

LUM0_GPLLT PLL_R53C5 PL35E_C PL35E_D PL35E_A PL35E_B

LLM1_GPLLT PLL_R35C5 PL53E_C PL53E_D PL53E_A PL53E_B

RLM1_GPLLT PLL_R53C70 PR53E_C PR53E_D PR53E_A PR53E_B

RUM0_GPLLT PLL_R35C70 PR35E_C PR35E_D PR35E_A PR35E_B

LatticeECP3-70/95

LUM0_GDLLT DLL_R43C15 PL37A PL37B PL38A PL38B

RUM0_GDLLT DLL_R43C132 PR37A PR37B PR38A PR38B

LUM2_GPLLT PLL_R25C5 PL25E_C PL25E_D PL25E_A PL25E_B

LUM0_GPLLT PLL_R43C5 PL43E_C PL43E_D PL43E_A PL43E_B

LLM1_GPLLT PLL_R61C5 PL61E_C PL61E_D PL61E_A PL61E_B

LLM2_GPLLT PLL_R70C5 PL70E_C PL70E_D PL70E_A PL70E_B

LLM3_GPLLT PLL_R79C5 PL79E_C PL79E_D PL79E_A PL79E_B

RLM3_GPLLT PLL_R79C142 PR79E_C PR79E_D PR79E_A PR79E_B

RLM2_GPLLT PLL_R70C142 PR70E_C PR70E_D PR70E_A PR70E_B

RLM1_GPLLT PLL_R61C142 PR61E_C PR61E_D PR61E_A PR61E_B

RUM0_GPLLT PLL_R43C142 PR43E_C PR43E_D PR43E_A PR43E_B

RUM2_GPLLT PLL_R25C142 PR25E_C PR25E_D PR25E_A PR25E_B

LatticeECP3-150

LUM0_GDLLT DLL_R61C15 PL55A PL55B PL56A PL56B

RUM0_GDLLT DLL_R61C168 PR55A PR55B PR56A PR56B

LUM2_GPLLT PLL_R43C5 PL43E_C PL43E_D PL43E_A PL43E_B

LUM0_GPLLT PLL_R61C5 PL61E_C PL61E_D PL61E_A PL61E_B

LLM1_GPLLT PLL_R79C5 PL79E_C PL79E_D PL79E_A PL79E_B

LLM3_GPLLT PLL_R97C5 PL97E_C PL97E_D PL97E_A PL97E_B

LLM4_GPLLT PLL_R106C5 PL106E_C PL106E_D PL106E_A PL106E_B

RLM4_GPLLT PLL_R106C178 PR106E_C PR106E_D PR106E_A PR106E_B

RLM3_GPLLT PLL_R97C178 PR97E_C PR97E_D PR97E_A PR97E_B

RLM1_GPLLT PLL_R79C178 PR79E_C PR79E_D PR79E_A PR79E_B

RUM0_GPLLT PLL_R61C178 PR61E_C PR61E_D PR61E_A PR61E_B

RUM2_GPLLT PLL_R43C178 PR43E_C PR43E_D PR43E_A PR43E_B

10-41

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Technical Support Assistance
e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History
Date Version Change Summary

February 2009 01.0 Initial release.

July 2009 01.1 Updated Secondary Clocks text section.

September 2009 01.2 Updated LatticeECP3 Primary Clock Muxes figure.

November 2009 01.3 Updated Edge Clocks text section.

February 2010 01.4 Reconciled LOCK description among MachXO, LatticeXP2,
LatticeECP2/M and LatticeECP3.

April 2010 01.5 Updated the Figure for Time Reference Delay Circuitry Example

Updated example for DLLDELB Usage with TRDLLB - Verilog

Added new section - PLL/DLL Names and Preferred Pads

June 2010 01.6 Updated for Lattice Diamond design software support.

January 2011 01.7 Added General Routing for Clocks text section.

February 2011 01.8 Added Fine Delay Ports text section.

June 2011 01.9 Output Clock (CLKOP) Divider text section – VCO frequency changed
from 435MHz - 870 MHZ to 500MHz - 1000MHz.

January 2012 02.0 Updated CLKI Input text section.

Updated CLKFB Input text section.

Updated DCS (Dynamic Clock Select) text section.

February 2012 02.1 Updated document with new corporate logo.

April 2012 02.2 Updated CLKDIV Usage with Verilog - Example.

Updated CLKDIV Example Circuits text section.

Updated DCS Usage with Verilog - Example.

May 2012 02.3 Updated CLKOK2 signal to clarify timing relationship to CLKOP.

September 2012 02.4 Update to fix Table 10-2, add primary clock preference examples, and
clarify secondary clock regions and how to create preferences for them.

July 2013 02.5 Updated Technical Support Assistance information.

February 2014 02.6 Updated Quadrant Primary Clock section. Added list of quadrant clocks.

Updated Figure 10-7, LatticeECP3 PLL Block Diagram.

Updated CLKI Input section. Added information on using PLL with high
speed DDR interfaces.

Updated Notes on PLL Usage section. Added information on using PLL
with high speed DDR interfaces.

Updated DCS (Dynamic Clock Select) description.

Updated Appendix A. Primary Clock Sources and Distribution and Ded-
icated DCS Clock Sources. Added Dedicated DCS Clock Sources infor-
mation to

mailto: techsupport@latticesemi.com
http://www.latticesemi.com

10-42

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Appendix A. Primary Clock Sources and Distribution and Dedicated DCS
Clock Sources
Figure 10-34. LatticeECP3 Primary Clock Sources and Distribution

Figure 10-35. LatticeECP3 Primary Clock Muxes (Simplified)

Primary Clocks in Center Switch Box

QUADRANT TL QUADRANT TR

DCSDCS DCS DCS

QUADRANT BL

PCS TX
HCLKs

QUADRANT BR

4

CLK0 CLK0CLK1 CLK1CLK2 CLK2CLK3 CLK3CLK4 CLK4CLK5 CLK5CLK6 CLK6CLK7

CLK0 CLK1 CLK2 CLK3 CLK4 CLK5 CLK6 CLK7

CLK7

CLK0CLK1CLK2CLK3CLK4CLK5CLK6CLK7

DCSDCS DCS DCS

PCLKT7

PCLKT6

PCLKT2

PCLKT3

P
C

LK
T

0

CLKDIV
(1 copy)

CLKDIV1
CLKDIV2
CLKDIV4
CLKDIV8

GPLL
(1-5 copies)

CLKOP
CLKOS
CLKOK

CLKOK2

DLL
(1 copy)

CLKOP
CLKOS

CLKDIV
(1 copy)

CLKDIV1
CLKDIV2
CLKDIV4
CLKDIV8

GPLL
(1-5 copies)

CLKOP
CLKOS
CLKOK
CLKOK2

DLL
(1 copy)

CLKOP
CLKOS

P
C

LK
T

1

CLK6 - 7

*For CLK6 and CLK7 muxes, the PLL, DLL and PCLK PIOs, inputs are not fully populated.
Note: Use EPIC to see exact routing

CLK0 - 5

D
C

S

4 outputs per 2-10 PLLs

2 outputs per 2 DLLs

4 PCS TX CLKs

4 outputs per 2 CLKDIVs

2 PCLK PIOs per left, top, right

VCC (default)

4 outputs per 2-10 PLLs*

2 outputs per 2 DLLs*

4 PCS TX CLKs

4 outputs per 2 CLKDIVs

2 PCLK PIOs* per left, top, right

VCC (default)

10-43

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Figure 10-36. Dedicated DCS Clock Sources

Figure 10-36 shows the clock sources that have dedicated routes to the DCS clock inputs. CLK0 and CLK1 have
slightly different dedicated connections as shown. These sources do not require the use of primary clock tree. It is
recommended that the user follows these connections to save primary clock tree resources.

C
LK

0

Only Left Side PLL CLKOP
Right and Left Side PLL CLKOS
Right and Left Side PLL CLKOK

Right and Left Side PLL CLKOK2
Only Left Side DLL CLKOP

Right and Left Side DLL CLKOS
Right and Left CLKDIV outputs

Left PCLK0 Pin
Right PCLK0 Pin

Top PCLK1 Pin

C
LK

0

Only Right Side PLL CLKOP
Right and Left Side PLL CLKOS
Right and Left Side PLL CLKOK

Right and Left Side PLL CLKOK2
Only Right Side DLL CLKOP

Right and Left Side DLL CLKOS
Right and Left CLKDIV outputs

Left PCLK1 Pin
Right PCLK1 Pin

Top PCLK0 Pin

CLK0

CLK1

D
C

S

CLK6/CLK7

10-44

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Appendix B. PLL, CLKIDV and ECLK Locations and Connectivity
Figure 10-37 shows the locations, site names and connectivity of the PLLs, CLKDIVs and ECLKs

Figure 10-37. PLL, CLKIDV and ECLK Locations and Connectivity

E
C

LK
1

E
C

LK
2

ECLK1

ECLK2

E
C

L
K

1

E
C

L
K

2

PCLKT7

ULGPLL_IN

Internal Node

LLGPLL_IN

 CLKOP

 CLKOSULGPLL

 CLKOP

 CLKOSLLGPLL

Internal Node
PCLKT6

PCLKT2

URGPLL_IN

Internal Node

LRGPLL_IN

Internal Node
PCLKT3

R
C

LK
D

IV
LC

LK
D

IV

In
te

rn
al

 N
od

e

P
C

LK
T

0

Le
ft

D
LL

R
ig

ht
 D

LL

To
p

R
ig

ht
 P

LL

To
p

Le
ft

P
LL

C
LK

IN
D

E
L

 CLKOP

 CLKOS
LRGPLL

 CLKOP

 CLKOS
URGPLL

In
te

rn
al

 N
od

e

P
C

LK
T

1

Le
ft

D
LL

R
ig

ht
 D

LL

To
p

R
ig

ht
 P

LL

To
p

Le
ft

P
LL

C
LK

IN
D

E
L

10-45

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Appendix C. Lattice Diamond Usage Overview
This appendix discusses the use of Lattice Diamond design software for projects that include the LatticeECP2M
SERDES/PCS module.

For general information about the use of Lattice Diamond, refer to the Lattice Diamond Tutorial.

If you have been using ispLEVER software for your FPGA design projects, Lattice Diamond may look like a big
change. But if you look closer, you will find many similarities because Lattice Diamond is based on the same toolset
and work flow as ispLEVER. The changes are intended to provide a simpler, more integrated, and more enhanced
user interface.

Converting an ispLEVER Project to Lattice Diamond
Design projects created in ispLEVER can easily be imported into Lattice Diamond. The process is automatic
except for the ispLEVER process properties, which are similar to the Diamond strategy settings, and PCS modules.
After importing a project, you need to set up a strategy for it and regenerate any PCS modules.

Importing an ispLEVER Design Project
Make a backup copy of the ispLEVER project or make a new copy that will become the Diamond project.

1. In Diamond, choose File > Open > Import ispLEVER Project.

2. In the ispLEVER Project dialog box, browse to the project’s .syn file and open it.

3. If desired, change the base file name or location for the Diamond project. If you change the location, the
new Diamond files will go into the new location, but the original source files will not move or be copied. The
Diamond project will reference the source files in the original location.

The project files are converted to Diamond format with the default strategy settings.

Adjusting PCS Modules
PCS modules created with IPexpress have an unusual file structure and need additional adjustment when import-
ing a project from ispLEVER. There are two ways to do this adjustment. The preferred method is to regenerate the
module in Diamond. However this may upgrade the module to a more recent version. An upgrade is usually desir-
able but if, for some reason, you do not want to upgrade the PCS module, you can manually adjust the module by
copying its .txt file into the implementation folder. If you use this method, you must remember to copy the .txt file
into any future implementation folders.

Regenerate PCS Modules
1. Find the PCS module in the Input Files folder of File List view. The module may be represented by an .lpc,

.v, or .vhd file.

2. If the File List view shows the Verilog or VHDL file for the module, and you want to regenerate the module,
import the module’s .lpc file:

a. In the File List view, right-click the implementation folder () and choose Add > Existing File.

b. Browse for the module’s .lpc file, <module_name>.lpc, and select it.

c. Click Add. The .lpc file is added to the File List view.

d. Right-click the module’s Verilog or VHDL file and choose Remove.

3. In File List, double-click the module’s .lpc file. The module’s IPexpress dialog box opens.

4. In the bottom of the dialog box, click Generate. The Generate Log tab is displayed. Check for errors and
close.

10-46

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

In File List, the .lpc file is replaced with an .ipx file. The IPexpress manifest (.ipx) file is new with Diamond. The .ipx
file keeps track of the files needed for complex modules.

Using IPexpress with Lattice Diamond
Using IPexpress with Lattice Diamond is essentially same as with ispLEVER.

The configuration GUI tabs are all the same except for the Generation Options tab. Figure 10-38 shows the Gener-
ation Options tab window.

Figure 10-38. Generation Options Tab

Table 10-18. SERDES_PCS GUI Attributes – Generation Options Tab

GUI Text Description

Automatic Automatically generates the HDL and configuration(.txt) files as needed. Some
changes do not require regenerating both files.

Force Module and Settings Generation Generates both the HDL and configuration files.

Force Settings Generation Only Generates only the attributes file. You get an error message if the HDL file also
needs to be generated.

Force Place & Route Process Reset Resets the Place & Route Design process, forcing it to be run again with the
newly generated PCS module.

Force Place & Route Trace Process Reset Resets the Place & Route Trace process, forcing it to be run again with the newly
generated PCS module.

Note:
Automatic is set as the default option. If either Automatic or Force Settings Generation Only and no sub-options (Process Reset Options) are
checked and the HDL module is not generated, the reset pointer is set to Bitstream generation automatically.

After the Generation is finished, the reset marks in the process window will be reset accordingly.

10-47

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Creating a New Simulation Project Using Simulation Wizard
This section describes how to use the Simulation Wizard to create a simulation project (.spf) file so you can import
it into a standalone simulator.

1. In Project Navigator, click Tools > Simulation Wizard. The Simulation Wizard opens.

2. In the Preparing the Simulator Interface page click Next.

3. In the Simulator Project Name page, enter the name of your project in the Project Name text box and
browse to the file path location where you want to put your simulation project using the Project Location
text box and Browse button.

When you designate a project name in this wizard page, a corresponding folder will be created in the file
path you choose. Click Yes in the popup dialog that asks you if you wish to create a new folder.

4. Click either the Active-HDL® or ModelSim® simulator check box and click Next.

5. In the Process Stage page choose which type of Process Stage of simulation project you wish to create
Valid types are RTL, Post-Synthesis Gate-Level, Post-Map Gate-Level, and Post-Route Gate-level+Timing.
Only those process stages that are available are activated.

Note that you can make a new selection for the current strategy if you have more than one defined in your
project.

The software supports multiple strategies per project implementation which allow you to experiment with
alternative optimization options across a common set of source files. Since each strategy may have been
processed to different stages, this dialog allows you to specify which stage you wish to load.

6. In the Add Source page, select from the source files listed in the Source Files list box or use the browse
button on the right to choose another desired source file. Note that if you wish to keep the source files in
the local simulation project directory you just created, check the Copy Source to Simulation Directory
option.

7. Click Next and a Summary page appears and provides information on the project selections including the
simulation libraries. By default, the Run Simulator check box is enabled and will launch the simulation tool
you chose earlier in the wizard in the Simulator Project Name page.

8. Click Finish.

The Simulation Wizard Project (.spf) file and a simulation script DO file are generated after running the wizard. You
can import the DO file into your current project if desired. If you are using Active-HDL, the wizard will generate an
.ado file and if you are using ModelSim, it creates and .mdo file.

Note: PCS configuration file, (.txt) must be added in step 6.

10-48

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Figure 10-39. Diamond Spreadsheet View (see Figure 10-6 for ispLEVER Equivalent)

Figure 10-40. Diamond IPexpress Main Window (see Figure 10-14 for ispLEVER Equivalent)

10-49

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Figure 10-41. Diamond LatticeECP3 PLL Configuration Tab (see Figure 10-15 for ispLEVER Equivalent)

10-50

LatticeECP3 sysCLOCK PLL/DLL
Design and Usage Guide

Figure 10-42. Diamond LatticeECP3 IPexpress DLL Configuration Tab (see Figure 10-22 for ispLEVER
Equivalent)

	LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide
	Introduction
	Clock/Control Distribution Network
	LatticeECP3 Top-Level View
	Primary Clocks
	Secondary Clocks
	Edge Clocks
	General Routing for Clocks
	Additional Connectivity for Dedicated Clock Resources
	Very Small Clock Domains
	Static Timing Analysis of General Routing Clocks

	Specifying Clocks in the Design Tools
	Global Primary Clock and Quadrant Primary Clock
	Global Primary Clock
	Primary-Pure and Primary-DCS
	Quadrant Primary Clock

	Global Secondary Clock and Regional Secondary Clocks
	Global Secondary Clocks
	Regional Secondary Clocks
	Secondary Region Clock Preferencing

	sysCLOCK™ PLL
	Functional Description
	PLL Divider and Delay Blocks

	PLL Inputs and Outputs
	CLKI Input
	RST Input
	RSTK Input
	CLKFB Input
	CLKOP Output
	CLKOS Output with Phase and Duty Cycle Select
	CLKOK Output with Lower Frequency
	CLKOK2 Output
	LOCK Output
	Dynamic Phase and Dynamic Duty Cycle Adjustment

	Dynamic Phase Adjustment/Duty Cycle Select
	Fine Delay Ports
	LatticeECP3 PLL Modules
	LatticeECP3 PLL Library Definition
	EPLLD Design Migration from LatticeECP2 to LatticeECP3
	Dynamic Phase/Duty Mode

	PLL Usage in IPexpress
	Configuration Tab

	PLL Modes of Operation
	PLL Clock Injection Removal
	PLL Clock Phase Adjustment

	IPexpress Output
	Notes on PLL Usage
	sysCLOCK DLL
	DLL Overview
	DLL Inputs and Outputs
	DLL Attributes
	DLL Library Definitions
	DLL Library Element I/Os
	DLL Modes of Operation
	DLL Usage in IPexpress
	DLLDEL (Slave Delay Line)

	DQSDLL and DQSDEL
	Clock Dividers (CLKDIV)
	CLKDIV Library Definition
	CLKDIV Declaration in VHDL Source Code
	CLKDIV Usage with Verilog - Example
	CLKDIV Example Circuits
	Reset Behavior
	Release Behavior
	CLKDIV Inputs-to-Outputs Delay Matching

	DCS (Dynamic Clock Select)
	DCS Library Definition
	DCS Timing Diagrams
	DCS Usage with VHDL - Example
	DCS Usage with Verilog - Example
	Oscillator (OSCF)
	OSC Library Symbol (OSCF)
	OSC Usage with VHDL - Example
	OSC Usage with Verilog - Example
	Setting Clock Preferences

	Power Supplies
	PLL/DLL Names and Preferred Pads
	Technical Support Assistance
	Revision History
	Appendix A. Primary Clock Sources and Distribution and Dedicated DCS Clock Sources
	Appendix B. PLL, CLKIDV and ECLK Locations and Connectivity
	Appendix C. Lattice Diamond Usage Overview
	Converting an ispLEVER Project to Lattice Diamond
	Importing an ispLEVER Design Project
	Adjusting PCS Modules
	Regenerate PCS Modules
	Using IPexpress with Lattice Diamond
	Creating a New Simulation Project Using Simulation Wizard

