

www.latticesemi.com

1

tn1022_02

ispGDX2 Pin Locking
Recommendations

January 2004 Technical Note TN1022

Introduction

The ispGDX2™ is the next generation In-System Programmable Generic Digital Crosspoint (ispGDX

®

) family from
Lattice Semiconductor. Based on the success of the first generation ispGDX family, the ispGDX2 continues to
address a variety of system-level digital signal routing and interface requirements with its fast and flexible architec-
ture. While the ispGDX family provides “bit oriented” architecture, the ispGDX2 family organizes the architecture
into nibble-sized blocks. This block architecture greatly improves the efficiency of bus-oriented applications such as
data/address bus multiplexing and programmable bus routing. Technical note TN1035,

ispGDX2 vs. ispGDX Archi-
tecture Comparison,

 provides a detailed architecture comparison between the two device families.

A brief comparison of the ispGDX2 and ispGDX architectures is given here as a background for the subsequent pin
locking discussion. It is expected that readers have a basic knowledge of both architectures, as provided in the
data sheets. The ispGDX2 architecture is based on 4:1 multiplexers similar to the ispGDX architecture. The
ispGDX2 offers enhanced flexibility compared with the ispGDX, both in terms of pin placement and total allowable
control signals. The ispGDX2 device family has added sysIO™ banks in the architecture to incorporate many pop-
ular I/O standards. This technical note provides pin-locking recommendations in two areas: one associated with
sysIO banks, the other with the routing architecture.

sysIO Banks

The ispGDX2 family supports eight sysIO banks per device. Each sysIO bank supports various I/O standards. In
general, the I/O standards supported can be grouped into three categories:

1. Non-terminated, single-ended interfaces such as LVTTL, LVCMOS, PCI 3.3, PCI-X, and AGP-1X.
2. Terminated, single-ended interface standards including various versions of SSTL and HSTL, CTT, and

GTL+. These require a V

REF

 signal, and a termination voltage (V

TT

) at the system level.

3. Differential standards such as LVDS, bus-LVDS (BLVDS), and LVPECL.

Users must take V

CCO

 and V

REF

 into consideration when locking pins with different I/O standards. Since each sysIO
bank shares common V

CCO

 and V

REF,

 every output pin within a bank should conform to the selection of V

CCO,

 and
every input pin should conform to the selection of V

REF

 if it belongs to the second I/O standard category. For exam-
ple, if V

CCO

 is set to 2.5V, only LVCMOS2.5, SSTL2, CTT2, GTL+ and differential standards outputs can be locked
in the bank. Similarly, if V

REF

 is set to 1.5V, only SSTL3, CTT3 inputs, and non-terminated standard inputs can be
locked in that bank. For more information on sysIO banks, refer to technical note TN1000,

sysIO Guidelines for Lat-
tice Devices.

 The ability to group appropriate V

CCO

 and V

REF

 and to check the violation of I/O standards in a sysIO
bank is supported in the current version of Lattice’s ispLEVER

®

 development tool.

All dedicated inputs (e.g., global clock/clock enable, global MUX select, global output enable, and global reset pins)
are conformed to LVTTL and LVCMOS standards by default. Table 1 lists other I/O standards supported by the var-
ious dedicated inputs.

Table 1. Standards Supported by Dedicated Pins

LVCMOS LVDS All other ASIC I/Os

Global OE Pins Yes No Yes

1

Global MUX Select Pins Yes No Yes

1

ResetB Yes No Yes

1

Global Clock/Clock Enables Yes Yes Yes

1

IspJTAG™ Port Yes

2

No No

TOE Yes No No

1. No PCI clamp 2. LVCMOS as defined by the V

CCJ

 pin voltage

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

2

Routing Architecture and Pin Locking Recommendations

The ispGDX2 routing architecture strikes a delicate balance by significantly increasing routing flexibility and reduc-
ing routing fuse requirements and device sizes without compromising the performance of the device. The ispGDX2
architecture divides the routing resources into two parts, one for the data paths in the GDX blocks, and the other for
the control arrays shared within the GDX block.

Data Paths in the GDX Block

The routing architecture divides the input pins into groups of 16. The 16 input pins are arranged such that if the pin
location M = pin location of N modulo 16, then pins M and N cannot be routed into the data path of the same nibble
of the GDX Block. For example, if signal A is locked at I/O 0 and signal B is locked at I/O 16, then they cannot be
used in the same nibble within the GDX block. Each nibble contains four MUX and Register Blocks (MRBs). Each
input of the 4:1 MUX of the MRB is sourced from the same group of input pins. In other words, each MRB within the
nibble is able to use any one of the 16 input signals coming into the nibble.

Data Path Pin Locking Recommendations

Users who understand the data path routing schemes of the ispGDX2 architecture can effectively lock pins. The fol-
lowing are several recommendations for data path pin locking.

1. Use Automatic Pin Locking with Back Annotation

This is one of the easiest ways is to allow the design tool to lock the pins based on the design. The design tool
takes various features of the architecture into consideration when assigning the pins and buses. When it recog-
nizes a bus, the design tool groups the signals within a bus in the same GDX Block or sysIO bank. The automatic
pin locking result provides the user with a good sense of how the pins should be locked, without requiring additional
resources in the device. The automatic pin locking result can be back annotated after a successful design fit and
utilized for subsequent fittings of the design. It is recommended to free all the pins for fitting if significant changes,
such as bus routing, have been made in the design.

2. Use Bus Assignment Dialog Box

This dialog box can be found within the Location Assignment dialog box of the Constraint Editor. The Bus Assign-
ment dialog box will appear when the “Bus Assignment” option is checked. The buses in the design will be shown
as grouped signals and the fitter will provide a list of candidate pins for each bus. The candidate pins provided for a
bus are grouped either within the same sysIO bank, or across multiple sysIO banks in a sequential manner,
depending on the bus sizes.

The current version of ispLEVER is able to recognize input buses, output buses, and bi-directional buses in the Bus
Assignment Dialog Box. Output signals can be extracted as a bus when all the signals have the same control sig-
nals, there are no V

CCO

 conflicts within the group, and the signals are not yet assigned. The control signals are the
MUX selects, output enables, clock/clock enables, and set/reset signals. For input signals, ispLEVER will check
that there are no V

REF

 conflicts in the group, that the pins are not yet assigned, and that all the signals only fanout
to a single bus. The extraction of bi-directional buses will require the combination of the rules mentioned above.
Therefore it is more challenging for the design tool to recognize or extract bi-directional buses in the Bus Assign-
ment Dialog Box.

When using the Bus Assignment dialog box, it is recommended to lock the output buses first. This is a good start-
ing point for locking the pins in the desired locations without worrying about the modulo-16 constraint. The advan-
tage of using the dialog box for bus locking is that candidate pins are provided based on logic equation analysis
results which, if used correctly, greatly reduces the possibility of routing conflicts in the design. The Logic Signal
Connections table in the data sheet lists the locations of the candidate pins.

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

3

Figure 1. Constraint Editor Bus Assignment Dialog Box

3. Use Location Assignment Dialog Box

While the Bus Assignment dialog box is a powerful tool for bus locking, the candidate pins do not cover all the pos-
sible pin combinations in the device. When locking individual pins, or locking specific locations not covered by the
candidate pin list, users can access the Location Assignment dialog box or the tabular form in the Constraint Editor.
Either method requires a thorough understanding of the ispGDX2 architecture and the pin locations in the device.

As with bus locking in the Bus Assignment dialog box, it is recommended to lock the output signals first. When lock-
ing input or bi-directional signals, users must keep the “modulo-16” rule in mind. If two or more buses pass through
the same nibble data path, the buses should not be locked in multiples of 16. For example, when busA and busB
each have 16 bits and each corresponding pair is MUXed together for the same output, users should try to offset
the arrangement of the buses by a certain number of pins. There are many ways to do this. The following list illus-
trates several methods.

• Lock the first 16-bit busA in I/O X to I/O Y in sequence, then lock the second 16-bit busB at I/O (Y+2) to I/O
(Y+17). This will offset the bus location by one to avoid the modulo-16 pin locations.

• Lock the first 16-bit busA in I/O X to I/O Y in sequence, then lock the control signals at I/O (Y+1) to I/O Z.
After that, lock the second 16-bit bus at I/O (Z+1) to I/O (Z+16). It is assumed that the total number of con-
trol signals between the two buses is not of modulo-16.

• Lock the first 16-bit busA in I/O X to I/O Y with MSB at I/O X, then lock the second 16-bit busB sequentially
with the LSB at I/O (Y+1).

• In the source code, define the MSB and LSB with the opposite index. For example, in the VHDL source
code, define busA to be (15 down to 0) and busB to be (0 to 15). Then lock busA and busB from bit 0 to bit
15 sequentially.

Users may devise other ideas to offset the pins. The goal is to make sure input or bi-directional pins going into the
same nibble are not locked in multiples of 16. Consulting the signal name column of the Logic Signal Connections
table in the data sheet is a good way to avoid this problem during input pin locking.

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

4

Control Array in the GDX Block

The Control Array for each GDX Block is separate and completely independent from the data paths in the GDX
Block. Only the GRP inputs are common between the Control Array and the data path. This means that both the
data paths and the Control Array derive their signal sets from the same GRP lines, thus removing boundary limita-
tions. The Control Array in each GDX Block is designed to provide a balance between functionality and speed.

Control Array Pin Locking Recommendations

The following are several recommendations for using control signals in the same GDX Block.

1. Lock Pins Automatically with ispLEVER

Similar to the rule used for data paths, automatic pin locking provides the ispLEVER design tool great flexibility in
pin placement to achieve the most effective resource utilization. For example, the design tool will utilize global con-
trol signals, if possible, to save routing resources in the device for other purposes.

2. Utilize Global Control Pins

Global control signals will free up routing resources in the device. The global signals available to each MRB
increase the options for the control signals in each GDX Block. For example, the four global clock pins plus the four
clock signals from the Control Array provide up to eight clock options in a GDX Block. Another example relates to
the Global MUX Select signals. In the ispGDX2 architecture, the four MRBs in a nibble share two common MUX
select signals coming from Control Array. Utilization of Global MUX Select signals allows each MRB in a nibble to
have two options of MUX control, one set from the global pins and the other set from the local Control Array. This
enables logic with different MUX control signals to be grouped into the same nibble of a GDX Block. As a result,
appropriately assigned global control signals are able to make the device more flexible.

To optimize the performance of the ispGDX2-256 device, the architecture divides the Global MUX Select signals to
control half of the sysIO Banks. Users should take this into consideration when assigning the Global MUX Select
signals for the logic. Global MUX Select signals SEL0 and SEL1 can be used in sysIO banks 4 to 7, while SEL2
and SEL3 can be used for sysIO banks 0 to 3. Smaller devices with 64 I/Os have two Global MUX Select signals
which are available to the entire device.

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

5

Figure 2. MRB of the ispGDX2 Family

Pin Locking Considerations for sysHSI™ and FIFO blocks

Every ispGDX2 device has multiple sysHSI blocks for high-speed serial interface. A sysHSI block supports up to
two SERDES blocks. The data to and from SERDES blocks, and/or FIFOs, share the same data paths in the GDX
blocks with the generic logic. The input path or the output path of an MRB cannot be used by generic logic if they
are occupied by the SERDES parallel data or FIFO data. Figure 3 shows the concept of signal routing between a
GDX block and the corresponding sysHSI block and FIFO. The Logic Signal Connection tables in the data sheet
detail the multiple functions of each MRB and its corresponding I/O. The connection information of SERDES block
0A of a ispGDX2-64 device is extracted from the data sheet and is listed in Table 1 for reference.

OE
Reg/Latch

OE

CE

CK

CK

CE

S/R

S/R

D/L

ClK

CE
Set Reset

D/L

ClK

CE

Set Reset

Q

Q2422-44

S
et

/R
es

et

C
K

/C
E

C
K

/C
E

O
E

O
E

to IN_Reg(n-1)
to IN_Reg(n+1)

from
Out_Reg(n-1)

from
Out_Reg(n+1)

FIFO Out*

from IN_Reg(n-1)
from IN_Reg(n+1)

to Out_Reg(n-1)

to Out_Reg(n+1)

Flags*
(FIFO, SERDES

or PLL)

*Selected MRBs see Logic Signal Connection Table for details

VCC

VCC

Delay

Global Resetb

Global Resetb

From GRP

MUX Select
Control Array Signals

MUX
Select
Global
Signals

Global
Signals

GDX
Control Array

TOE

To GRP

D/L

ClK

CE

Set Reset

Q

Out
Reg/Latch

Input
Reg/Latch

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

6

Figure 3. Operation in SERDES Only and SERDES with FIFO Modes

SERDESFIFO

Differential
Data in

GDX Block

DINDOUT

GRP

Serial

Data

(SIN)

RXD

Parallel

Data

Serial

Data

(SOUT)

TXD

Parallel

Data

1010

10

Differential
Data outRE

RCLK

WE,
WCLK4

RECCLK4

Input
Reg/
Latch

Input
Reg/
Latch

CDRRSTb

Out
Reg/
Latch

FULL,

EMPTY,

STRDb

Out
Reg/
Latch

Delay

Delay

RESETb

POR

Notes:
1. Some pins shared. See Logic Signal
Connections table for details.
2. For SERDES only mode programmable bit
holds FIFO in reset. Input registers used for
DOUT, and RECCLK configured as
latches and held in pass through.
3. From general I/O pins.
4. WCLK is generated from RECCLK or the Global Clocks.
WE is generated from the Global Clocks.

Input
Reg/
Latch

Delay

Out
Reg/
Latch

SYDT

Note 3

Note 3

Note 3

10

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

7

The “SERDES Mode I/O Functions” column in the table shows the I/O cells, or pins, occupied by the SERDES
function. The “SERDES to FIFO Core” column shows the internal connections between the SERDES channel and
the FIFO in SERDES with FIFO mode, or between the SERDES block and the GDX block in SERDES only mode.
In both modes, a part of MRB or the entire MRB will be occupied. A Receive parallel data bit (HSIxx_RXDy) will
take up the input path of the MRB while the Transmit parallel data bit (HSIxx_TXDy) will take up the output path of
the same MRB. For example, if the Receive channel of the SERDES block 0A 10B12B mode is used, it will not be
possible to assign input signals to the pins associated with MRB 4 to MRB13 in GDX block 0A. By the same token,
an utilized transmit channel of SERDES block 0A will prevent other signals going out to the pins through MRB 4 to
MRB13. However, if only the Transmit channel is used in the SERDES block, the corresponding input paths of the
MRBs are still open for input signals, except MRBs 12 and 13 because the pins are occupied by the serial outputs
(SOUTP and SOUTN). This is because the input path and the output paths for a given MRB are independent of
each other. Same rules can be applied to FIFO function. The “FIFO Mode I/O Function” column shows the I/O cells,
or pins, occupied by FIFO inputs or outputs in FIFO mode. When FIFO_FULL signal is output to the pin, its associ-
ated output path of the MRB cannot be used for output but its associated input path is still available for internal
logic. Just like the generic logic, the modulo-16 rule should be taken into consideration when SERDES and FIFO
blocks are used in the design. Appendix A gives several pin-conflict examples when various functional blocks are
used in the ispGDX2 device.

Table 2. Logic Signal Connections for SERDES Block 0A of ispGDX2-64 Device

Signal Name
sysIO
Bank

LVDS Buffer
GDX
Block MRB

SERDES Mode
I/O Functions

SERDES to FIFO
Core

FIFO Mode I/O
Function

100
fpBGAPolarity Pair

GOE0 - - - - - - - - H6

BK0_IO0/PLL_LOCK0 0 N 0 0A 0 - - FIFO0_FULL J6

BK0_IO1 0 P 0 0A 1 HSI0A_CDRRSTb - FIFO0_FIFORSTb K6

GND 0 - - - - - - - GND

BK0_IO2 0 N 1 0A 2 HSI0A_SINN HSI0A_RECCLK - G7

BK0_IO3 0 P 1 0A 3 HSI0A_SINP - - H7

GND 0 - - - - - - - GND

BK0_IO4/PLL_RST0 0 N 2 0A 4 - HSI0A_RXD0 FIFO0_DIN0 K7

BK0_IO5 0 P 2 0A 5 - HSI0A_RXD1 FIFO0_DIN1 K8

BK0_IO6/CLK_OUT0 0 N 3 0A 6 - HSI0A_RXD2 FIFO0_DIN2 J8

BK0_IO7 0 P 3 0A 7 - HSI0A_RXD3 FIFO0_DIN3 K9

GND 0 - - - - - - - GND

TCK - - - - - - - - J10

RESETb - - - - - - - - J9

BK1_IO0/PLL_FBK0 0 P 4 0A 8 HSI0A_SYDT HSI0A_RXD4 FIFO0_DIN4 H10

BK1_IO1 0 N 4 0A 9 - HSI0A_RXD5 FIFO0_DIN5 H9

BK1_IO2 0 P 5 0A 10 - HSI0A_RXD6 FIFO0_DIN6 H8

BK1_IO3/VREF(0,1) 0 N 5 0A 11 FIFO0_STRDb HSI0A_RXD7 FIFO0_DIN7 G10

GND 0 - - - - - - - GND

BK1_IO4 0 P 6 0A 12 HSI0A_SOUTP HSI0A_RXD8 FIFO0_DIN8 G9

BK1_IO5 0 N 6 0A 13 HSI0A_SOUTN HSI0A_RXD9 FIFO0_DIN9 G8

GND 0 - - - GND

BK1_IO6 0 P 7 0A 14 SS_CLKIN1P HSI0A_SYDT - F9

BK1_IO7 0 N 7 0A 15 SS_CLKIN1N - FIFO0_ EMPTY F8

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

8

Special Considerations for Differential Signals

The modulo-16 rule still applies when using LVDS/BLVDS I/O standards. However, the constraint is more relaxed
because of the LVDS/BLVDS positive (P) and negative (N) pair assignment across two consecutive banks. For an
ispGDX2 device, any two consecutive sysIO banks have their LVDS/BLVDS P and N locations swapped. For exam-
ple, sysIO bank 1 has P locations assigned to even-numbered I/O pins while sysIO bank 2 have P locations
assigned to odd-numbered I/O pins. In the case of muxing two 16-bit LVDS/BLVDS input buses, users can assign
each LVDS/BLVDS pair consecutively for the entire two buses without running into modulo-16 constraints.

Lattice macros may be used in the source code to identify whether the signals are LVDS/BLVDS input, output or bi-
directional pins. The differential I/O types may also be assigned directly in the Constraint Editor of the ispLEVER
tool. The macro or the Constraint Editor usages are the same for LVDS/BLVDS signals with and without sysHSI
blocks. Please refer to technical note TN1020,

sysHSI Block Usage Guidelines,

 for the definitions of LVDS/BLVDS
macros. It is important to understand that each differential signal pair occupies two I/O pins. Therefore when the
positive side of a LVDS pair is locked, the design tool will automatically reserve the corresponding negative pin of
the pair.

Summary

The ispGDX2 family supports various I/O standards, including single-ended and differential, to offer great interfac-
ing capability for aggregate bandwidth up to 38Gbps. Its multiplexer-based architecture provides efficient imple-
mentation of high-speed switching and routing functions. The integrated sysHSI blocks support standard serial link
technologies and FIFO resources to reduce the components in the system and improve the overall performance. At
the device level, the ispGDX2 architecture completely removes pin location requirements existing in the current
ispGDX architecture. It also supports standard LVDS/BLVDS with and without the sysHSI blocks. Utilization of new
design tool features and an understanding of the device architecture allow users to achieve high resource utiliza-
tion and enjoy the flexibility of pin assignments. Design tool enhancements, such as GDX block assignment and
reservation, will be included in future versions of the development tools to ensure an easy and straightforward pin
locking experience.

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)

+1-408-826-6002 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

9

Appendix A. Possible Routing Conflicts Due to Pin Locking

Routing conflicts happen when pin locations are assigned manually by the user. When pin-locking conflicts arise
during fitting, the design tool will give out explicit error messages to explain the situation and list the pins involved in
the conflicts. Most of the time it is related to modulo-16 restriction, occasionally it is related to the MUXSELECT
signal, or SERDES/FIFO blocks. Following discussion addresses the majority pin-locking conflicts during design fit-
ting. The pin location information is based on ispGDX2-64 device in the 100-ball fpBGA package.

Case 1: Modulo-16 Conflicts with Generic Logic

entity generic_logic is
port(a, b : in std_logic;

sel : in std_logic;
q : out std_logic
);
attribute loc: string;
attribute loc of a: signal is “PG7”;
attribute loc of b: signal is “PD8”;

end;

architecture behave of generic_logic is
begin

q <= a when sel = ‘1’ else b;
end behave;

The two input pins are modulo-16 apart. Therefore they cannot be routed into the same output function. The
workaround is to assign one of the input pins to a different location to avoid modulo-16 conflict.

Case 2: Modulo-16 Conflicts with SERDES Parallel Data

entity serdes is
port (sinp : in std_logic;

sinn : in std_logic;
refclk : in std_logic;
rst : in std_logic;
bufin : in std_logic;
bufout : out std_logic_vector(1 downto 0);
recclk : out std_logic;
rxd_out: out std_logic_vector(9 downto 0)
);

attribute loc : string;
attribute loc of sinp: signal is "PH7";
attribute loc of refclk : signal is "PE4";
attribute loc of rxd_out: signal is "PE8 PE9 PD8 PD9 PD10 PC9 PC10 PB10 PA9 PB8";
attribute loc of bufin: signal is "PA6";
attribute loc of bufout: signal is "PA8 PA7";

end;

architecture behave of serdes is
signal rxd_int: std_logic_vector(9 downto 0);
signal sin: std_logic;

component LVDSIN
port(

P_IN : in STD_LOGIC;
N_IN :in STD_LOGIC;
O :out STD_LOGIC);

end component;

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

10

component CDRX_10B12B
generic(IN_FREQ : string := "50");
port(

SIN : in STD_LOGIC; REFCLK : in STD_LOGIC;
CDRRST : in STD_LOGIC; RXD0 : out STD_LOGIC;

 RXD1: out STD_LOGIC; RXD2 : out STD_LOGIC;
 RXD3: out STD_LOGIC; RXD4 : out STD_LOGIC;
 RXD5: out STD_LOGIC; RXD6 : out STD_LOGIC;
 RXD7: out STD_LOGIC; RXD8 : out STD_LOGIC;
 RXD9: out STD_LOGIC; RECCLK : out STD_LOGIC;
 CSLOCK : out STD_LOGIC; CDRLOCK : out STD_LOGIC;
 LOSS : out STD_LOGIC; SYDT : out STD_LOGIC);
end component;
attribute in_freq: string;
attribute in_freq of u1: label is "50";

begin

x1: lvdsin port map (sinp, sinn, sin);

u1 : CDRX_10B12B
port map(

SIN => sin, REFCLK => refclk,
 CDRRST => not rst, RXD0 => rxd_int(0), RXD1 => rxd_int(1),

RXD2 => rxd_int(2), RXD3 => rxd_int(3), RXD4 => rxd_int(4),
RXD5 => rxd_int(5), RXD6 => rxd_int(6), RXD7 => rxd_int(7),
RXD8 => rxd_int(8), RXD9 => rxd_int(9), RECCLK => recclk,
CSLOCK => open, CDRLOCK => open, LOSS => open,
SYDT => open);

rxd_out <= rxd_int;
bufout <= bufin & bufin;

end behave;

The pin-locking conflict comes from the RXD bit0 of SERDES block 0A and the input signal BUFIN signal. The RXD
bit 0 occupies the input path of MRB 4 of SERDES block 0A. BUFIN comes in from pin A6, which is the MRB 4 of
GDX block 1A. There is no routing conflict at this stage even though they are modulo-16 apart. The routing conflict
happens when RXD bit 0 is output to RXD_OUT bit 0, and BUFIN is output to BUFOUT. The RXD_OUT bit 0 and
BUFOUT are located in the same nibble (nibble 3 of GDX block 0B). The modulo-16 restriction prevents the two
signals to be routed to the same nibble. The conflict can be resolved by either moving one of the inputs to a differ-
ent location, or one of the outputs to a different nibble.

Case 3: SERDES Data and Control Signal Conflicts

entity serdes_data_ctrl is
port (sinp : in std_logic;

sinn : in std_logic;
refclk : in std_logic;
rst : in std_logic;
enb : in std_logic;
data_in: in std_logic_vector(9 downto 0);
recclk : out std_logic;
sydt_out: out std_logic;
rxd_out: out std_logic_vector(9 downto 0);
soutp : out std_logic;
soutn : out std_logic
);

attribute loc : string;
attribute loc of sinp: signal is “PH7”;

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

11

attribute loc of refclk : signal is “PE4”;
attribute loc of enb: signal is “PK9”;
attribute loc of sydt_out: signal is “PH10”;

end;

architecture behave of serdes_data_ctrl is
signal rxd_int: std_logic_vector(9 downto 0);
signal sin: std_logic;
signal sout: std_logic;

component LVDSIN
port(

P_IN :in STD_ULOGIC;
N_IN :in STD_ULOGIC;
O :out STD_ULOGIC);

end component;

component LVDSOUT
port(

I :in STD_ULOGIC;
P_OUT :out STD_ULOGIC;
N_OUT :out STD_ULOGIC);

end component;

component CDRX_10B12B
generic(IN_FREQ : string := “50”);
port(

SIN : in STD_LOGIC; REFCLK : in STD_LOGIC;
CDRRST : in STD_LOGIC; RXD0 : out STD_LOGIC;

 RXD1 : out STD_LOGIC; RXD2 : out STD_LOGIC;
 RXD3 : out STD_LOGIC; RXD4 : out STD_LOGIC;
 RXD5 : out STD_LOGIC; RXD6 : out STD_LOGIC;
 RXD7 : out STD_LOGIC; RXD8 : out STD_LOGIC;
 RXD9 : out STD_LOGIC; RECCLK : out STD_LOGIC;
 CSLOCK : out STD_LOGIC; CDRLOCK : out STD_LOGIC;
 LOSS : out STD_LOGIC; SYDT : out STD_LOGIC);
end component;
attribute in_freq: string;
attribute in_freq of u1: label is “50”;

component TX_10B12B
generic(IN_FREQ : string := “50”);

 port(
REFCLK : in STD_LOGIC; TXD0 : in STD_LOGIC;

 TXD1 : in STD_LOGIC; TXD2 : in STD_LOGIC;
 TXD3 : in STD_LOGIC; TXD4 : in STD_LOGIC;
 TXD5 : in STD_LOGIC; TXD6 : in STD_LOGIC;
 TXD7 : in STD_LOGIC; TXD8 : in STD_LOGIC;
 TXD9 : in STD_LOGIC; SOUT : out STD_LOGIC;
 CSLOCK : out STD_LOGIC);
end component;
attribute in_freq of u2: label is “50”;

begin

x1: lvdsin port map (sinp, sinn, sin);
x2: lvdsout port map (sout, soutp, soutn);

u1 : CDRX_10B12B

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

12

port map(
 SIN => sin, REFCLK => refclk, CDRRST => not rst,

RXD0 => rxd_int(0), RXD1 => rxd_int(1), RXD2 => rxd_int(2),
RXD3 => rxd_int(3), RXD4 => rxd_int(4), RXD5 => rxd_int(5),
RXD6 => rxd_int(6), RXD7 => rxd_int(7), RXD8 => rxd_int(8),
RXD9 => rxd_int(9), RECCLK => recclk, CSLOCK => open,
CDRLOCK => open, LOSS => open, SYDT => sydt_out);

rxd_out <= rxd_int when enb = ‘1’ else (others => ‘Z’);

u2: TX_10B12B
port map(

refclk => refclk, txd0 => data_in(0), txd1 => data_in(1),
txd2 => data_in(2), txd3 => data_in(3), txd4 => data_in(4),
txd5 => data_in(5), txd6 => data_in(6), txd7 => data_in(7),
txd8 => data_in(8), txd9 => data_in(9), sout => sout,
cslock => open);

end behave;

There are two pin-locking conflicts in this design. The input signal, ENB, is assigned to MRB 7 (pin K9) of GDX
block 0A. The input path of the same MRB is being used by the RXD3 of the Receive SERDES channel because
the SINP is locked to HSI0A_SINP location. The two signals are trying to be routed into GRP through the input path
of the same MRB therefore the design tool issues an error. The SYDT output is locked to MRB 8 of SERDES block
0A. This MRB’s output path is used for Transmit data TXD4. Again, the design tool issues an error because of the
routing path conflict. The first conflict can be workaround by assigning ENB to a different GDX block. The second
conflict can be resolved by assigning SYDT to a different pin to allow the SYDT signal to be routed through GRP.

Case 4 : Two Paths of the SYDT Signal

entity sydt_paths is
port (sinp : in std_logic;

sinn : in std_logic;
refclk : in std_logic;
rst : in std_logic;
cdrrst : in std_logic;
flags : in std_logic_vector(1 downto 0);
ready : out std_logic;
rxd_out: out std_logic_vector(9 downto 0)
);

attribute loc : string;
attribute loc of flags : signal is “PF9 PF8”;
attribute loc of sinp: signal is “PH7”;
attribute loc of refclk : signal is “PF7”;

end;

architecture behave of sydt_paths is
signal rxd_int: std_logic_vector(9 downto 0);
signal sin: std_logic;
signal sydt: std_logic;
signal recclk: std_logic;

component LVDSIN
port(

P_IN : in STD_LOGIC;
N_IN : in STD_LOGIC;
O :out STD_LOGIC);

end component;

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

13

component CDRX_10B12B
generic(IN_FREQ : string := “50”);

port(
SIN : in STD_LOGIC; REFCLK : in STD_LOGIC;
CDRRST : in STD_LOGIC; RXD0 : out STD_LOGIC;
RXD1 : out STD_LOGIC; RXD2 : out STD_LOGIC;
RXD3 : out STD_LOGIC; RXD4 : out STD_LOGIC;
RXD5 : out STD_LOGIC; RXD6 : out STD_LOGIC;
RXD7 : out STD_LOGIC; RXD8 : out STD_LOGIC;
RXD9 : out STD_LOGIC; RECCLK : out STD_LOGIC;
CSLOCK : out STD_LOGIC; CDRLOCK : out STD_LOGIC;
LOSS : out STD_LOGIC; SYDT : out STD_LOGIC);

end component;
attribute in_freq: string;
attribute in_freq of u1: label is “50”;

begin

x1: lvdsin port map (sinp, sinn, sin);

u1 : CDRX_10B12B
port map(
SIN => sin, REFCLK => refclk, CDRRST => not cdrrst,
RXD0 => rxd_int(0), RXD1 => rxd_int(1), RXD2 => rxd_int(2),
RXD3 => rxd_int(3), RXD4 => rxd_int(4), RXD5 => rxd_int(5),
RXD6 => rxd_int(6), RXD7 => rxd_int(7), RXD8 => rxd_int(8),
RXD9 => rxd_int(9), RECCLK => recclk, CSLOCK => open,
CDRLOCK => open, LOSS => open, SYDT => sydt);

rxd_out <= rxd_int;

u2: process(recclk, rst)
begin
if (rst = ‘0’) then

ready <= ‘0’;
elsif falling_edge(recclk) then

if sydt = ‘1’ then
ready <= flags(0);
else
ready <= flags(1);

end if;
end if;
end process u2;

end behave;

The SYDT signal generated by the SERDES block has two routing paths. It will take up the output path of MRB 8 of
SERDES block 0A when it is assigned to pin H10. If this signal is used internally or assigned to a pin other than the
H10, it will be routed to GRP through the input path of MRB 14. In this case, SYDT is used internally and therefore
will use the MRB 14 (pin F9) of the SERDES block 0A. Since signal FLAGS bit1 is assigned to F9, there is a routing
conflict because both SYDT and FLAGS bit 1 are trying to use the input path of the same MRB. The workaround is
to assign FLAGS bit 1 to another pin location.

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

14

Case 5: The Reserved CDRRST Signal

entity serdes_data_ctrl is
port (refclk : in std_logic;

sigA : in std_logic;
data_in: in std_logic_vector(9 downto 0);
lvdsAp : out std_logic;
lvdsAn : out std_logic;
soutp : out std_logic;
soutn : out std_logic
);

attribute loc : string;
attribute loc of soutp: signal is “PG9”;
attribute loc of refclk : signal is “PE4”;
attribute loc of sigA: signal is “PK6”;

end;

architecture behave of serdes_data_ctrl is
signal sout: std_logic;

component LVDSOUT
port(

I :in STD_LOGIC;
P_OUT :out STD_LOGIC;
N_OUT :out STD_LOGIC);

end component;

component TX_8B10B
generic(IN_FREQ : string := “50”);
 port(

REFCLK : in STD_LOGIC;
TXD0 : in STD_LOGIC; TXD1 : in STD_LOGIC;

 TXD2 : in STD_LOGIC; TXD3 : in STD_LOGIC;
 TXD4 : in STD_LOGIC; TXD5 : in STD_LOGIC;
 TXD6 : in STD_LOGIC; TXD7 : in STD_LOGIC;
 TXD8 : in STD_LOGIC; TXD9 : in STD_LOGIC;
 SOUT : out STD_LOGIC; CSLOCK : out STD_LOGIC);
end component;
attribute in_freq: string;
attribute in_freq of u1: label is “50”;

begin

x1: lvdsout port map (sout, soutp, soutn);
x2: lvdsout port map (sigA, lvdsAp, lvdsAn);

u1: TX_8B10B
port map(

refclk => refclk,
txd0 => data_in(0), txd1 => data_in(1), txd2 => data_in(2),
txd3 => data_in(3), txd4 => data_in(4), txd5 => data_in(5),
txd6 => data_in(6), txd7 => data_in(7), txd8 => data_in(8),
txd9 => data_in(9), sout => sout, cslock => open);

end behave;

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

15

The CDRRST pin has effect on the entire SERDES block. Consequently the pin is occupied whenever the SER-
DES block is utilized, whether it is used for Transmit only, or Receive only, or for the full-duplex function. This design
uses the Transmit channel of the SERDES block with an input signal (SigA) assigned to the CDRRST pin (K6). This
will cause an error during fitting. The simple workaround is to assign the SigA signal to a different pin.

Case 6: Different MUXSEL Signal in the Same Nibble

entity muxsel_ctrl is
port (rst : in std_logic;

selA : in std_logic_vector(1 downto 0);
sigA : in std_logic_vector(3 downto 0);
selB : in std_logic;
outa : out std_logic;
outb : out std_logic
);

attribute loc : string;
attribute loc of outa: signal is “PG9”;
attribute loc of outb: signal is “PF8”;

end;

architecture behave of muxsel_ctrl is
signal cntl: std_logic_vector(2 downto 0);

begin
cntl <= rst & selA;

outa <= sigA(0) when cntl = “100” else
sigA(1) when cntl = “101” else
sigA(2) when cntl = “110” else
sigA(3) when cntl = “111” else
‘0’;

outb <= selA(0) when selB = ‘0’ else selA(1);

end behave;

The conflict comes from the MUXSEL signals for the two output pins. Signal OUTA is an 8:1 MUX, and the final
stage MUXSEL is signal RST. Signal OUTB is a 2:1 MUX, and the MUXSEL is signal SELB. The two signals can-
not be assigned to the same nibble because they do not share the same MUXSEL signals. There are several
workarounds for this situation. The easiest one is to assign the two output signals to two different nibbles. The con-
flict can also be resolved by moving one pair of select signals to global MUXSEL pins. The second solution does
not work for this particular design because the MUXSEL signals are not a pair (RST for OUTA, and SELB for
OUTB).

	Introduction
	sysIO Banks
	Routing Architecture and Pin Locking Recommendations
	Data Paths in the GDX Block
	Data Path Pin Locking Recommendations
	Control Array in the GDX Block
	Control Array Pin Locking Recommendations

	Pin Locking Considerations for sysHSI™ and FIFO blocks
	Special Considerations for Differential Signals
	Summary
	Technical Support Assistance
	Appendix A. Possible Routing Conflicts Due to Pin Locking

