=] attice ispGDX2 Pin Locking

BEn oo Recommendations
January 2004 Technical Note TN1022
Introduction

The ispGDX2™ is the next generation In-System Programmable Generic Digital Crosspoint (ispGDX®) family from
Lattice Semiconductor. Based on the success of the first generation ispGDX family, the ispGDX2 continues to
address a variety of system-level digital signal routing and interface requirements with its fast and flexible architec-
ture. While the ispGDX family provides “bit oriented” architecture, the ispGDX2 family organizes the architecture
into nibble-sized blocks. This block architecture greatly improves the efficiency of bus-oriented applications such as
data/address bus multiplexing and programmable bus routing. Technical note TN1035, ispGDX2 vs. ispGDX Archi-
tecture Comparison, provides a detailed architecture comparison between the two device families.

A brief comparison of the ispGDX2 and ispGDX architectures is given here as a background for the subsequent pin
locking discussion. It is expected that readers have a basic knowledge of both architectures, as provided in the
data sheets. The ispGDX2 architecture is based on 4:1 multiplexers similar to the ispGDX architecture. The
ispGDX2 offers enhanced flexibility compared with the ispGDX, both in terms of pin placement and total allowable
control signals. The ispGDX2 device family has added syslO™ banks in the architecture to incorporate many pop-
ular 1/0 standards. This technical note provides pin-locking recommendations in two areas: one associated with
syslO banks, the other with the routing architecture.

syslO Banks

The ispGDX2 family supports eight syslO banks per device. Each syslO bank supports various 1/O standards. In
general, the 1/0 standards supported can be grouped into three categories:

1. Non-terminated, single-ended interfaces such as LVTTL, LVCMOS, PCI 3.3, PCI-X, and AGP-1X.

2. Terminated, single-ended interface standards including various versions of SSTL and HSTL, CTT, and
GTL+. These require a Vger signal, and a termination voltage (V17) at the system level.

3. Differential standards such as LVDS, bus-LVDS (BLVDS), and LVPECL.

Users must take Voo and Ve into consideration when locking pins with different 1/0 standards. Since each syslO
bank shares common Vcco and Vgeg, every output pin within a bank should conform to the selection of Vcco, and
every input pin should conform to the selection of Vger if it belongs to the second I/O standard category. For exam-
ple, if Vgeo is set to 2.5V, only LVCMOS2.5, SSTL2, CTT2, GTL+ and differential standards outputs can be locked
in the bank. Similarly, if Vger is set to 1.5V, only SSTL3, CTT3 inputs, and non-terminated standard inputs can be
locked in that bank. For more information on syslO banks, refer to technical note TN1000, sys/O Guidelines for Lat-
tice Devices. The ability to group appropriate Vcco and Vrer and to check the violation of 1/0 standards in a sysIO
bank is supported in the current version of Lattice’s ispLEVER® development tool.

All dedicated inputs (e.g., global clock/clock enable, global MUX select, global output enable, and global reset pins)
are conformed to LVTTL and LVCMOS standards by default. Table 1 lists other I/O standards supported by the var-
ious dedicated inputs.

Table 1. Standards Supported by Dedicated Pins

LVCMOS LVDS All other ASIC I/Os
Global OE Pins Yes No Yes'
Global MUX Select Pins Yes No Yes'
ResetB Yes No Yes'
Global Clock/Clock Enables Yes Yes Yes'
IspJTAG™ Port Yes? No No
TOE Yes No No

1.No PClclamp 2. LVCMOS as defined by the V¢, pin voltage

www.latticesemi.com 1 tn1022_02

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

Routing Architecture and Pin Locking Recommendations

The ispGDX2 routing architecture strikes a delicate balance by significantly increasing routing flexibility and reduc-
ing routing fuse requirements and device sizes without compromising the performance of the device. The ispGDX2
architecture divides the routing resources into two parts, one for the data paths in the GDX blocks, and the other for
the control arrays shared within the GDX block.

Data Paths in the GDX Block

The routing architecture divides the input pins into groups of 16. The 16 input pins are arranged such that if the pin
location M = pin location of N modulo 16, then pins M and N cannot be routed into the data path of the same nibble
of the GDX Block. For example, if signal A is locked at 1/0 0 and signal B is locked at I/O 16, then they cannot be
used in the same nibble within the GDX block. Each nibble contains four MUX and Register Blocks (MRBs). Each
input of the 4:1 MUX of the MRB is sourced from the same group of input pins. In other words, each MRB within the
nibble is able to use any one of the 16 input signals coming into the nibble.

Data Path Pin Locking Recommendations

Users who understand the data path routing schemes of the ispGDX2 architecture can effectively lock pins. The fol-
lowing are several recommendations for data path pin locking.

1. Use Automatic Pin Locking with Back Annotation

This is one of the easiest ways is to allow the design tool to lock the pins based on the design. The design tool
takes various features of the architecture into consideration when assigning the pins and buses. When it recog-
nizes a bus, the design tool groups the signals within a bus in the same GDX Block or syslO bank. The automatic
pin locking result provides the user with a good sense of how the pins should be locked, without requiring additional
resources in the device. The automatic pin locking result can be back annotated after a successful design fit and
utilized for subsequent fittings of the design. It is recommended to free all the pins for fitting if significant changes,
such as bus routing, have been made in the design.

2. Use Bus Assignment Dialog Box

This dialog box can be found within the Location Assignment dialog box of the Constraint Editor. The Bus Assign-
ment dialog box will appear when the “Bus Assignment” option is checked. The buses in the design will be shown
as grouped signals and the fitter will provide a list of candidate pins for each bus. The candidate pins provided for a
bus are grouped either within the same syslO bank, or across multiple syslO banks in a sequential manner,
depending on the bus sizes.

The current version of ispLEVER is able to recognize input buses, output buses, and bi-directional buses in the Bus
Assignment Dialog Box. Output signals can be extracted as a bus when all the signals have the same control sig-
nals, there are no Vgco conflicts within the group, and the signals are not yet assigned. The control signals are the
MUX selects, output enables, clock/clock enables, and set/reset signals. For input signals, ispLEVER will check
that there are no Vrer conflicts in the group, that the pins are not yet assigned, and that all the signals only fanout
to a single bus. The extraction of bi-directional buses will require the combination of the rules mentioned above.
Therefore it is more challenging for the design tool to recognize or extract bi-directional buses in the Bus Assign-
ment Dialog Box.

When using the Bus Assignment dialog box, it is recommended to lock the output buses first. This is a good start-
ing point for locking the pins in the desired locations without worrying about the modulo-16 constraint. The advan-
tage of using the dialog box for bus locking is that candidate pins are provided based on logic equation analysis
results which, if used correctly, greatly reduces the possibility of routing conflicts in the design. The Logic Signal
Connections table in the data sheet lists the locations of the candidate pins.

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

Figure 1. Constraint Editor Bus Assignment Dialog Box

Location Assignment x|

—Bus Assignment

Bus List
busld_5_ bustd_4_ bustd_3_ busld_2_ busld_1_ busld 0_ busld_7_ busld_§ d
busza_b_ busZa_4_ bus2a_3_ bus2a_2_ busZa_1_ bus2a 0_ busZa_7_ busia_§
bus?h_ B bus2b_4_ bus2b_3_ busib_2_ busib_1_ busZb 0_ buseh_7_ busZh_k
bus2c 5 bus2c 4 busgc_3_ busZc 2 bus2c 1_ bus?c 0_ bus2c 7 bus2c B_
bus2d_5_ bus2d_4_ bus2d_3_ bus2d_2_ bus2d_1_ bus2d_0_ bus2d_7_ hus2d_E_

muxe 5 mux2 4 muxg_ 3 mux? 2 mux? 1 mux@ 0 mux2_ 7 mux2 B_

Fin List

AB. AR GY GB Ch B5 D6 C4 il
A9, CB, B, A8 BY7, C7. A7 BB

AA16, AATE NTE, W1E, L4, L5, ABT6, AB17

AA17 T, T14, T16, AATE ABTS, W18, Y14

An18, ABTE WIE, Y19, W21 W20, V22, W22

AAB, AAE 1B, LIG,W7 \WE, ABB, AB7

ABT3, AATSVIE VT T2 N3 W2 Y13 ﬂ
AP1d APIE YR SWAR AATE AATR VIG MR

¥ Bus Assignment
Existing Location Assignment List

Type ¢ Signal Name Segment GLB Macrocell Pin -

Clutput ruxl_6_ ca

Cutput mux]_7_ cin

Cutput muxl_0_ Fio -

Cutput mux]_1_ F11

Cutput muxl_2_ E10

Mgt ranel 3 F11 b

< I _>|_I
Add pefete || Wiy | Undahisiy| ok | cancel | Hep |

3. Use Location Assignment Dialog Box

While the Bus Assignment dialog box is a powerful tool for bus locking, the candidate pins do not cover all the pos-
sible pin combinations in the device. When locking individual pins, or locking specific locations not covered by the
candidate pin list, users can access the Location Assignment dialog box or the tabular form in the Constraint Editor.
Either method requires a thorough understanding of the ispGDX2 architecture and the pin locations in the device.

As with bus locking in the Bus Assignment dialog box, it is recommended to lock the output signals first. When lock-
ing input or bi-directional signals, users must keep the “modulo-16” rule in mind. If two or more buses pass through
the same nibble data path, the buses should not be locked in multiples of 16. For example, when busA and busB
each have 16 bits and each corresponding pair is MUXed together for the same output, users should try to offset
the arrangement of the buses by a certain number of pins. There are many ways to do this. The following list illus-
trates several methods.

+ Lock the first 16-bit busA in I/O X to I/O Y in sequence, then lock the second 16-bit busB at I/0 (Y+2) to I/10
(Y+17). This will offset the bus location by one to avoid the modulo-16 pin locations.

+ Lock the first 16-bit busA in /O X to I/0Y in sequence, then lock the control signals at I/O (Y+1) to I/O Z.
After that, lock the second 16-bit bus at I/O (Z+1) to I1/0O (Z+16). It is assumed that the total number of con-
trol signals between the two buses is not of modulo-16.

+ Lock the first 16-bit busA in I/0O X to I/OY with MSB at I/0O X, then lock the second 16-bit busB sequentially
with the LSB at I/0 (Y+1).

+ In the source code, define the MSB and LSB with the opposite index. For example, in the VHDL source
code, define busA to be (15 down to 0) and busB to be (0 to 15). Then lock busA and busB from bit 0 to bit
15 sequentially.

Users may devise other ideas to offset the pins. The goal is to make sure input or bi-directional pins going into the
same nibble are not locked in multiples of 16. Consulting the signal name column of the Logic Signal Connections
table in the data sheet is a good way to avoid this problem during input pin locking.

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

Control Array in the GDX Block

The Control Array for each GDX Block is separate and completely independent from the data paths in the GDX
Block. Only the GRP inputs are common between the Control Array and the data path. This means that both the
data paths and the Control Array derive their signal sets from the same GRP lines, thus removing boundary limita-
tions. The Control Array in each GDX Block is designed to provide a balance between functionality and speed.

Control Array Pin Locking Recommendations
The following are several recommendations for using control signals in the same GDX Block.

1. Lock Pins Automatically with ispLEVER

Similar to the rule used for data paths, automatic pin locking provides the ispLEVER design tool great flexibility in
pin placement to achieve the most effective resource utilization. For example, the design tool will utilize global con-
trol signals, if possible, to save routing resources in the device for other purposes.

2. Utilize Global Control Pins

Global control signals will free up routing resources in the device. The global signals available to each MRB
increase the options for the control signals in each GDX Block. For example, the four global clock pins plus the four
clock signals from the Control Array provide up to eight clock options in a GDX Block. Another example relates to
the Global MUX Select signals. In the ispGDX2 architecture, the four MRBs in a nibble share two common MUX
select signals coming from Control Array. Utilization of Global MUX Select signals allows each MRB in a nibble to
have two options of MUX control, one set from the global pins and the other set from the local Control Array. This
enables logic with different MUX control signals to be grouped into the same nibble of a GDX Block. As a result,
appropriately assigned global control signals are able to make the device more flexible.

To optimize the performance of the ispGDX2-256 device, the architecture divides the Global MUX Select signals to
control half of the syslO Banks. Users should take this into consideration when assigning the Global MUX Select
signals for the logic. Global MUX Select signals SELO and SEL1 can be used in syslO banks 4 to 7, while SEL2
and SELS3 can be used for syslO banks 0 to 3. Smaller devices with 64 I/Os have two Global MUX Select signals
which are available to the entire device.

Lattice Semiconductor

ispGDX2 Pin Locking Recommendations

Figure 2. MRB of the ispGDX2 Family

MUX
Select
Gilobal

MUX Select

Control Array Signals

L

»

Signals >

Pin Locking Considerations for sysHSI™ and FIFO blocks

Every ispGDX2 device has multiple sysHSI blocks for high-speed serial interface. A sysHSI block supports up to
two SERDES blocks. The data to and from SERDES blocks, and/or FIFOs, share the same data paths in the GDX
blocks with the generic logic. The input path or the output path of an MRB cannot be used by generic logic if they
are occupied by the SERDES parallel data or FIFO data. Figure 3 shows the concept of signal routing between a
GDX block and the corresponding sysHSI block and FIFO. The Logic Signal Connection tables in the data sheet
detail the multiple functions of each MRB and its corresponding I/0. The connection information of SERDES block

— 1
¥

T

From GRP

To GRP +—

Global GDX
Signals Control Array
A4 \"4 Y VYV Vv
4 24p 2f 4} 2 oE DL a
]
o L
g o oK . CK OE
EJD Reg/Latch
CE > 1ce
Set Reset
Vce
4
w from »
m % 2 o OuLFleg(n-1)_> P DL QM
8 (&) from

Out_Reg(n+1)

Global Resetb

=ED_ CK Qut
Reg/Latch

TOE

Flags*
(FIFO, SERDES
or PLL)

A

Doy 1
FIFO Out*

from IN_Reg(n-1) ' D/L Q

from IN_Reg(n+1)

S/R

CE

CcK 4>|;D_ CK Input
cE —>|;D—

Reg/Latch

Set Reset

Global Resetb

*Selected MRBs see Logic Signal Connection Table for details

to IN_Reg(n-1)
to IN_Reg(n+1)

0A of a ispGDX2-64 device is extracted from the data sheet and is listed in Table 1 for reference.

to Out_Reg(n-1)
to Out_Reg(n+1)

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

Figure 3. Operation in SERDES Only and SERDES with FIFO Modes

GRP GDX Block FIFO SERDES
4_
« o
< < NOtf 8 Differential
J Data in
i <+ Delay || 1o 10 10 | RXD Serial
T Laten h pouT DIN «—/—{Parallel Data
': :' Data (SIN)
|
R G - RCLK
| Differential
T ~* RE Data out
- 10 TXD Serial
> > Parallel Data
; o Data (SOUT)
Latch
L e e | e e el E 1
i < i
| e -« WE, . |
! <« < v WCLK !
! J oe J RECCLK4 |
| |
0 IO vy | |
: Reg/ < |
e : Latch :
P i L O e e ST T !
D j Note SJ
Reg/ 9 < SYDT
Latch
> >
; q Out
» Reg/
Latch
CDRRSTD [+—¢——<-<>
FULL,
EMPTY,
N STRDb {
; > Out
» Reg/
Latch

Notes:

1. Some pins shared. See Logic Signal

Connections table for details.

2. For SERDES only mode programmable bit POR
holds FIFO in reset. Input registers used for RESETb
DOUT, and RECCLK configured as

latches and held in pass through.

3. From general I/O pins.

4. WCLK is generated from RECCLK or the Global Clocks.
WE is generated from the Global Clocks.

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

The “SERDES Mode I/0 Functions” column in the table shows the 1/O cells, or pins, occupied by the SERDES
function. The “SERDES to FIFO Core” column shows the internal connections between the SERDES channel and
the FIFO in SERDES with FIFO mode, or between the SERDES block and the GDX block in SERDES only mode.
In both modes, a part of MRB or the entire MRB will be occupied. A Receive parallel data bit (HSIxx_RXDy) will
take up the input path of the MRB while the Transmit parallel data bit (HSIxx_TXDy) will take up the output path of
the same MRB. For example, if the Receive channel of the SERDES block 0A 10B12B mode is used, it will not be
possible to assign input signals to the pins associated with MRB 4 to MRB13 in GDX block OA. By the same token,
an utilized transmit channel of SERDES block OA will prevent other signals going out to the pins through MRB 4 to
MRB13. However, if only the Transmit channel is used in the SERDES block, the corresponding input paths of the
MRBs are still open for input signals, except MRBs 12 and 13 because the pins are occupied by the serial outputs
(SOUTP and SOUTN). This is because the input path and the output paths for a given MRB are independent of
each other. Same rules can be applied to FIFO function. The “FIFO Mode I/O Function” column shows the 1/O cells,
or pins, occupied by FIFO inputs or outputs in FIFO mode. When FIFO_FULL signal is output to the pin, its associ-
ated output path of the MRB cannot be used for output but its associated input path is still available for internal
logic. Just like the generic logic, the modulo-16 rule should be taken into consideration when SERDES and FIFO
blocks are used in the design. Appendix A gives several pin-conflict examples when various functional blocks are
used in the ispGDX2 device.

Table 2. Logic Signal Connections for SERDES Block 0A of ispGDX2-64 Device

sysio| VDS Buffer | opy SERDES Mode | SERDES to FIFO | FIFOMode /O | 100
Signal Name Bank | Polarity Pair Block | MRB I/0 Functions Core Function fpBGA

GOEO0 - - - - - - H6
BKO_IO0/PLL_LOCKO 0 N 0 0A - FIFOO_FULL J6
BKO_IO1 0 P 0 0A 1 HSIOA_CDRRSTb FIFOO_FIFORSTb K6
GND 0 - - - - GND
BKO_lO2 0 N 1 0A 2 HSIOA_SINN HSIOA_RECCLK - G7
BKO_IO3 0 1 0A 3 HSIOA_SINP - - H7
GND 0 - - - - - GND
BKO_IO4/PLL_RSTO 0 N 2 0A 4 HSIOA_RXDO FIFOO_DINO K7
BKO_IO5 0 P 2 0A 5 HSIOA_RXD1 FIFOO_DIN1 K8
BKO_IO6/CLK_OUTO 0 N 3 0A 6 HSIOA_RXD2 FIFOO_DIN2 J8
BKO_IO7 0 P 3 0A 7 HSIOA_RXD3 FIFOO_DIN3 K9
GND 0 - - GND
TCK - - - J10
RESETb - - - - - - J9
BK1_lO0/PLL_FBKO 0 P 4 0A 8 HSIOA_SYDT HSIOA_RXD4 FIFOO_DIN4 H10
BK1_lO1 0 N 4 0A 9 HSIOA_RXD5 FIFOO_DIN5 H9
BK1_l02 0 P 5 0A 10 - HSIOA_RXD6 FIFOO_DIN6 H8
BK1_IO3/VREF(0,1) 0 N 5 0A 11 FIFOO_STRDb HSIOA_RXD7 FIFOO_DIN7 G10
GND 0 - - - - - - GND
BK1_l04 0 P 6 0A 12 HSIOA_SOUTP HSIOA_RXD8 FIFOO_DIN8 G9
BK1_lO5 0 N 6 0A 13 HSIOA_SOUTN HSIOA_RXD9 FIFOO_DIN9 G8
GND 0 - - GND
BK1_lO6 0 P 0A 14 SS_CLKIN1P HSIOA_SYDT - F9
BK1_lO7 0 N 0A 15 SS_CLKIN1N FIFOO_ EMPTY F8

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

Special Considerations for Differential Signals

The modulo-16 rule still applies when using LVDS/BLVDS 1/O standards. However, the constraint is more relaxed
because of the LVDS/BLVDS positive (P) and negative (N) pair assignment across two consecutive banks. For an
ispGDX2 device, any two consecutive syslO banks have their LVDS/BLVDS P and N locations swapped. For exam-
ple, syslO bank 1 has P locations assigned to even-numbered 1/O pins while syslO bank 2 have P locations
assigned to odd-numbered 1/O pins. In the case of muxing two 16-bit LVDS/BLVDS input buses, users can assign
each LVDS/BLVDS pair consecutively for the entire two buses without running into modulo-16 constraints.

Lattice macros may be used in the source code to identify whether the signals are LVDS/BLVDS input, output or bi-
directional pins. The differential I/O types may also be assigned directly in the Constraint Editor of the ispLEVER
tool. The macro or the Constraint Editor usages are the same for LVDS/BLVDS signals with and without sysHSI
blocks. Please refer to technical note TN1020, sysHSI Block Usage Guidelines, for the definitions of LVDS/BLVDS
macros. It is important to understand that each differential signal pair occupies two I/O pins. Therefore when the
positive side of a LVDS pair is locked, the design tool will automatically reserve the corresponding negative pin of
the pair.

Summary

The ispGDX2 family supports various I/O standards, including single-ended and differential, to offer great interfac-
ing capability for aggregate bandwidth up to 38Gbps. Its multiplexer-based architecture provides efficient imple-
mentation of high-speed switching and routing functions. The integrated sysHSI blocks support standard serial link
technologies and FIFO resources to reduce the components in the system and improve the overall performance. At
the device level, the ispGDX2 architecture completely removes pin location requirements existing in the current
ispGDX architecture. It also supports standard LVDS/BLVDS with and without the sysHSI blocks. Utilization of new
design tool features and an understanding of the device architecture allow users to achieve high resource utiliza-
tion and enjoy the flexibility of pin assignments. Design tool enhancements, such as GDX block assignment and
reservation, will be included in future versions of the development tools to ensure an easy and straightforward pin
locking experience.

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)
+1-408-826-6002 (Outside North America)

e-mail: techsupport@Iatticesemi.com

Internet: www.latticesemi.com

Lattice Semiconductor

ispGDX2 Pin Locking Recommendations

Appendix A. Possible Routing Conflicts Due to Pin Locking

Routing conflicts happen when pin locations are assigned manually by the user. When pin-locking conflicts arise
during fitting, the design tool will give out explicit error messages to explain the situation and list the pins involved in
the conflicts. Most of the time it is related to modulo-16 restriction, occasionally it is related to the MUXSELECT
signal, or SERDES/FIFO blocks. Following discussion addresses the majority pin-locking conflicts during design fit-

ting. The pin location information is based on ispGDX2-64 device in the 100-ball fpBGA package.

Case 1: Modulo-16 Conflicts with Generic Logic

entity generic_logic is
port (a, b

sel

q

)i

: in std logic;
: in std logic;
: out std logic

attribute loc: string;
attribute loc of a: signal is “PG7”;
attribute loc of b: signal is “PD8";

end;

architecture behave of generic_logic is

begin

g <= a when sel = ‘1’ else b;

end behave;

The two input pins are modulo-16 apart. Therefore they cannot be routed into the

workaround is to assign one of the input pins to a different location to avoid modulo-16 conflict.

Case 2: Modulo-16 Conflicts with SERDES Parallel Data

entity serdes is

port (sinp
sinn

refclk

rst
bufin

bufout
recclk

: in std logic;

: in std logic;

: in std logic;

: in std logic;

: in std logic;

: out std_logic_vector(1l downto 0);
: out std logic;

rxd out:

)i
attribute
attribute
attribute
attribute
attribute
attribute

end;

loc
loc
loc
loc
loc
loc

out std logic_ vector(9 downto 0)

: string;

of
of
of
of
of

sinp: signal is "PH7";

refclk : signal is "PE4";

rxd out: signal is "PE8 PE9 PD8 PD9 PD10 PC9 PC10 PB10 PA9 PB8";
bufin: signal is "PA6";

bufout: signal is "PA8 PA7";

architecture behave of serdes is
signal rxd int: std logic_vector(9 downto 0);
signal sin: std logic;

component LVDSIN

port(

P IN : in STD LOGIC;
N _IN :in STD_LOGIC;

(]

sout STD_LOGIC);

end component;

same output function. The

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

component CDRX 10B12B
generic(IN FREQ : string := "50");
port (
SIN : in STD_LOGIC; REFCLK : in STD_LOGIC;
CDRRST : in STD_LOGIC; RXDO : out STD_LOGIC;
RXD1l: out STD_LOGIC; RXD2 : out STD_LOGIC;
RXD3: out STD _LOGIC; RXD4 : out STD_LOGIC;
RXD5: out STD _LOGIC; RXD6 : out STD LOGIC;
RXD7: out STD LOGIC; RXD8 : out STD LOGIC;
RXD9: out STD _LOGIC; RECCLK : out STD_LOGIC;
CSLOCK : out STD_LOGIC; CDRLOCK : out STD_LOGIC;
LOSS : out STD_LOGIC; SYDT : out STD_LOGIC);
end component;
attribute in freq: string;
attribute in freq of ul: label is "50";

begin
x1: lvdsin port map (sinp, sinn, sin);

ul : CDRX 10B12B
port map(

SIN => sin, REFCLK => refclk,
CDRRST => not rst, RXDO => rxd int(0), RXD1l => rxd_int(1l),
RXD2 => rxd int(2), RXD3 => rxd int(3), RXD4 => rxd int(4),
RXD5 => rxd int(5), RXD6 => rxd int(6), RXD7 => rxd_int(7),
RXD8 => rxd int(8), RXD9 => rxd int(9), RECCLK => recclk,
CSLOCK => open, CDRLOCK => open, LOSS => open,
SYDT => open);

rxd out <= rxd int;
bufout <= bufin & bufin;

end behave;

The pin-locking conflict comes from the RXD bit0 of SERDES block 0OA and the input signal BUFIN signal. The RXD
bit 0 occupies the input path of MRB 4 of SERDES block 0A. BUFIN comes in from pin A6, which is the MRB 4 of
GDX block 1A. There is no routing conflict at this stage even though they are modulo-16 apart. The routing conflict
happens when RXD bit 0 is output to RXD_OUT bit 0, and BUFIN is output to BUFOUT. The RXD_OUT bit 0 and
BUFOUT are located in the same nibble (nibble 3 of GDX block 0B). The modulo-16 restriction prevents the two
signals to be routed to the same nibble. The conflict can be resolved by either moving one of the inputs to a differ-
ent location, or one of the outputs to a different nibble.

Case 3: SERDES Data and Control Signal Conflicts

entity serdes_data ctrl is

port (sinp : in std logic;
sinn : in std logic;
refclk : in std logic;
rst : in std_logic;
enb : in std logic;

data in: in std logic_vector(9 downto 0);
recclk : out std logic;
sydt out: out std logic;
rxd out: out std logic vector(9 downto 0);
soutp : out std logic;
soutn : out std logic
)i
attribute loc : string;
attribute loc of sinp: signal is “PH7";

10

Lattice Semiconductor

ispGDX2 Pin Locking Recommendations

end;

attribute loc of refclk : signal is “PE4”;
attribute loc of enb: signal is “PK9”;
attribute loc of sydt out: signal is “PH10";

architecture behave of serdes data ctrl is

begin

signal rxd int: std logic_vector(9 downto 0);
signal sin: std logic;
signal sout: std logic;

component LVDSIN

port(
P_IN :in STD_ULOGIC;
N_IN :in STD_ULOGIC;
(0] :out STD _ULOGIC);

end component;

component LVDSOUT

port(
I :in STD_ULOGIC;
P_OUT tout STD ULOGIC;
N_OuT :out STD ULOGIC);
end component;
component CDRX 10B12B
generic(IN FREQ : string := “507);
port (
SIN : in STD _LOGIC; REFCLK
CDRRST : in STD_LOGIC; RXDO
RXD1 : out STD_LOGIC; RXD2
RXD3 : out STD_LOGIC; RXD4
RXD5 : out STD LOGIC; RXD6
RXD7 : out STD LOGIC; RXDS8
RXD9 : out STD LOGIC; RECCLK
CSLOCK : out STD LOGIC; CDRLOCK
LOSS : out STD_LOGIC; SYDT

end component;
attribute in freq: string;
attribute in freq of ul: label is “50”;

component TX 10B12B

generic(IN FREQ : string := “507);

port(
REFCLK : in STD _LOGIC; TXDO : in
TXD1 : in STD LOGIC; TXD2 : in
TXD3 : in STD_LOGIC; TXD4 : in
TXD5 : in STD_LOGIC; TXD6 : in
TXD7 : in STD_LOGIC; TXD8 : in
TXD9 : in STD _LOGIC; SOUT : out
CSLOCK : out STD LOGIC);

end component;
attribute in freq of u2: label is “50";

x1l: lvdsin port map (sinp, sinn, sin);
x2: lvdsout port map (sout, soutp, soutn);

ul :

CDRX_10B12B

: in STD_LOGIC;
: out STD_LOGIC;
: out STD LOGIC;
: out STD_LOGIC;
: out STD_LOGIC;
: out STD LOGIC;
: out STD_LOGIC;
: out STD LOGIC;
: out STD LOGIC);

STD LOGIC;
STD LOGIC;
STD _LOGIC;
STD LOGIC;
STD LOGIC;
STD LOGIC;

11

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

port map(

SIN => sin, REFCLK => refclk, CDRRST => not rst,
RXDO => rxd int(0), RXD1l => rxd int(1l), RXD2 => rxd int(2),
RXD3 => rxd int(3), RXD4 => rxd int(4), RXD5 => rxd int(5),
RXD6 => rxd int(6), RXD7 => rxd int(7), RXD8 => rxd int(8),
RXD9 => rxd int(9), RECCLK => recclk, CSLOCK => open,
CDRLOCK => open, LOSS => open, SYDT => sydt out);

rxd out <= rxd int when enb = ‘1’ else (others => ‘Z');

u2: TX 10B12B
port map(
refclk => refclk, txd0 => data_in(0), txdl => data_in(1l),
txd2 => data_in(2), txd3 => data in(3), txd4 => data_in(4),
txd5 => data _in(5), txdé => data in(6), txd7 => data in(7),
txd8 => data in(8), txd9 => data in(9), sout => sout,
cslock => open);

end behave;

There are two pin-locking conflicts in this design. The input signal, ENB, is assigned to MRB 7 (pin K9) of GDX
block OA. The input path of the same MRB is being used by the RXD3 of the Receive SERDES channel because
the SINP is locked to HSIOA_SINP location. The two signals are trying to be routed into GRP through the input path
of the same MRB therefore the design tool issues an error. The SYDT output is locked to MRB 8 of SERDES block
0A. This MRB’s output path is used for Transmit data TXD4. Again, the design tool issues an error because of the
routing path conflict. The first conflict can be workaround by assigning ENB to a different GDX block. The second
conflict can be resolved by assigning SYDT to a different pin to allow the SYDT signal to be routed through GRP.

Case 4 : Two Paths of the SYDT Signal
entity sydt paths is

port (sinp : in std logic;
sinn : in std logic;
refclk : in std_logic;
rst : in std logic;
cdrrst : in std_logic;
flags : in std logic vector(1l downto 0);

ready : out std logic;
rxd out: out std logic vector(9 downto 0)
)i
attribute loc : string;
attribute loc of flags : signal is “PF9 PF8";
attribute loc of sinp: signal is “PH7";
attribute loc of refclk : signal is “PF7”;
end;

architecture behave of sydt paths is
signal rxd int: std logic_vector(9 downto 0);
signal sin: std logic;
signal sydt: std logic;
signal recclk: std logic;

component LVDSIN

port(
P IN : in STD_LOGIC;
N_IN : in STD_LOGIC;
(0] :out STD_LOGIC);

end component;

12

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

component CDRX 10B12B
generic(IN FREQ : string := “507);

port (

SIN : in STD_LOGIC; REFCLK : in STD_LOGIC;

CDRRST : in STD_LOGIC; RXDO : out STD_LOGIC;

RXD1 : out STD_LOGIC; RXD2 : out STD_LOGIC;
RXD3 : out STD_LOGIC; RXD4 : out STD_LOGIC;
RXD5 : out STD LOGIC; RXD6 : out STD LOGIC;
RXD7 : out STD LOGIC; RXD8 : out STD LOGIC;
RXD9 : out STD_LOGIC; RECCLK : out STD_LOGIC;
CSLOCK : out STD_LOGIC; CDRLOCK : out STD_LOGIC;

LOSS : out STD_LOGIC; SYDT : out STD_LOGIC);

end component;
attribute in freq: string;
attribute in freq of ul: label is “50”;

begin
x1: lvdsin port map (sinp, sinn, sin);

ul : CDRX 10B12B
port map(
SIN => sin, REFCLK => refclk, CDRRST => not cdrrst,
RXDO => rxd int(0), RXD1l => rxd int(1l), RXD2 => rxd int(2),
RXD3 => rxd int(3), RXD4 => rxd int(4), RXD5 => rxd int(5),
RXD6 => rxd int(6), RXD7 => rxd int(7), RXD8 => rxd int(8),
RXD9 => rxd int(9), RECCLK => recclk, CSLOCK => open,
CDRLOCK => open, LOSS => open, SYDT => sydt);

rxd_out <= rxd_int;

u2: process(recclk, rst)

begin

if (rst = ‘0’) then
ready <= ‘0’;

elsif falling edge(recclk) then
if sydt = ‘1’ then
ready <= flags(0);
else
ready <= flags(1l);

end if;
end if;
end process u2;

end behave;

The SYDT signal generated by the SERDES block has two routing paths. It will take up the output path of MRB 8 of
SERDES block 0OA when it is assigned to pin H10. If this signal is used internally or assigned to a pin other than the
H10, it will be routed to GRP through the input path of MRB 14. In this case, SYDT is used internally and therefore
will use the MRB 14 (pin F9) of the SERDES block 0A. Since signal FLAGS bit1 is assigned to F9, there is a routing
conflict because both SYDT and FLAGS bit 1 are trying to use the input path of the same MRB. The workaround is
to assign FLAGS bit 1 to another pin location.

13

Lattice Semiconductor

ispGDX2 Pin Locking Recommendations

Case 5: The Reserved CDRRST Signal

entity serdes data ctrl is

end;

port (refclk : in std logic;
sigA : in std logic;
data _in: in std logic_vector(9 downto 0);
lvdsAp : out std logic;
lvdsAn : out std logic;
soutp : out std logic;
soutn : out std logic
)i
attribute loc : string;
attribute loc of soutp: signal is “PG9”;
attribute loc of refclk : signal is “PE4”;
attribute loc of sigA: signal is “PK6";

architecture behave of serdes_data ctrl is

begin

signal sout: std logic;

component LVDSOUT
port(
I :in STD LOGIC;
P_OUT tout STD_LOGIC;
N OUT :out STD LOGIC);
end component;

component TX 8B10B

generic(IN FREQ : string := “50”);
port (
REFCLK : in STD_LOGIC;
TXDO : in STD_LOGIC; TXDl
TXD2 : in STD_LOGIC; TXD3
TXD4 : in STD _LOGIC; TXD5
TXD6 : in STD_LOGIC; TXD7
TXD8 : in STD_LOGIC; TXD9

SouT : out STD_LOGIC; CSLOCK
end component;
attribute in freq: string;
attribute in freq of ul: label is “50”;

x1l: lvdsout port map (sout, soutp, soutn);
x2: lvdsout port map (sigA, lvdsAp, lvdsAn);

ul: TX 8B10B

end behave;

port map(
refclk => refclk,

txd0 => data_in(0), txdl => data in(1l), txd2
txd3 => data_in(3), txd4 => data in(4), txd5
txd6 => data in(6), txd7 => data in(7), txd8

in STD _LOGIC;
in STD LOGIC;
in STD LOGIC;
in STD LOGIC;
in STD_LOGIC;

: out STD_LOGIC);

=> data_in(2),
=> data_in(5),
=> data in(8),

txd9 => data_in(9), sout => sout, cslock => open);

14

Lattice Semiconductor ispGDX2 Pin Locking Recommendations

The CDRRST pin has effect on the entire SERDES block. Consequently the pin is occupied whenever the SER-
DES block is utilized, whether it is used for Transmit only, or Receive only, or for the full-duplex function. This design
uses the Transmit channel of the SERDES block with an input signal (SigA) assigned to the CDRRST pin (K6). This
will cause an error during fitting. The simple workaround is to assign the SigA signal to a different pin.

Case 6: Different MUXSEL Signal in the Same Nibble

entity muxsel ctrl is

port (rst : in std logic;
selA : in std logic vector(l downto 0);
sigA : in std logic_vector(3 downto 0);
selB : in std logic;
outa : out std_logic;
outb : out std logic

)i
attribute loc : string;
attribute loc of outa: signal is “PG9”;
attribute loc of outb: signal is “PF8”;
end;

architecture behave of muxsel ctrl is

signal cntl: std logic vector(2 downto 0);
begin

cntl <= rst & seld;

outa <= sigA(0) when cntl = “100” else
sigA(1l) when cntl = “101” else
sigA(2) when cntl = “110” else
sigA(3) when cntl = “111” else

IOI;
outb <= selA(0) when selB = ‘0’ else selA(l);

end behave;

The conflict comes from the MUXSEL signals for the two output pins. Signal OUTA is an 8:1 MUX, and the final
stage MUXSEL is signal RST. Signal OUTB is a 2:1 MUX, and the MUXSEL is signal SELB. The two signals can-
not be assigned to the same nibble because they do not share the same MUXSEL signals. There are several
workarounds for this situation. The easiest one is to assign the two output signals to two different nibbles. The con-
flict can also be resolved by moving one pair of select signals to global MUXSEL pins. The second solution does
not work for this particular design because the MUXSEL signals are not a pair (RST for OUTA, and SELB for
OuUTB).

15

	Introduction
	sysIO Banks
	Routing Architecture and Pin Locking Recommendations
	Data Paths in the GDX Block
	Data Path Pin Locking Recommendations
	Control Array in the GDX Block
	Control Array Pin Locking Recommendations

	Pin Locking Considerations for sysHSI™ and FIFO blocks
	Special Considerations for Differential Signals
	Summary
	Technical Support Assistance
	Appendix A. Possible Routing Conflicts Due to Pin Locking

