
www.latticesemi.com 81

Introduction to the sysHSI Block
ispXPGA and ispGDX2

April 2003 Technical Note

™

™ ™

Introduction
Embedding clocks into serial data streams is a popular technique in high-speed data communications systems
applications. The embedded clock is recovered at the receiver by a Clock and Data Recovery (CDR) circuit. Source
Synchronous mode provides another way of achieving high speed data rate without embedding the clock.

Lattice provides sysHSI blocks on ispXPGA and ispGDX2 device families to support both embedded clock and
source synchronous clocking applications. This document provides an introduction to the sysHSI Blocks. Refer to
Technical Note TN1020 for detailed description.

Modes of Operation
The sysHSI block supports number of different modes. In Clock Data Recovery (CDR) mode, clock is encoded in
the transmit data stream and CDR recovers this clock from the incoming data. In Source Synchronous Mode, clock
is transmitted along with data via a separate channel.

Three fuse programmable modes and their related system specifications are summarized in Table 1.

Table 1. Fuse Programmable Modes

CDR Mode
In CDR mode clock is encoded in serial data streams to achieve higher data transfer rates. This is achieved by
encoding the transmitted data in such a way as to ensure a minimum number of clock transitions. From this mini-
mum number of transitions a complete clock can be recovered at the receiver.

The sysHSI block supports two encoding options. In both options the sysHSI block recovers data using 16 times
over-sampling. This leads to better performance than many other solutions that use lower over-sampling rates.

SERDES without Encoding/Decoding (8B/10B: Encoding and Decoding is not included)
This mode supports serial links that use the common 8B/10B encoding scheme. With this scheme eight bits of data
are encoded into 10 bit symbols to ensure a minimum of 40% transition in every 10-bit code.

In 8B/10B mode the sysHSI block does not encode or decode the data. The block receives encoded 8B/10B data
as 10-bit wide parallel data and transmits it serially. It receives serial data and converts it to 10-bit wide 8B/10B
encoded data. This data can be re-transmitted or decoded elsewhere dependent on the application needs.

SERDES with Encoding (10B/12B: Encoding and Decoding is done by sysHSI Block)
This mode supports serial links that use 10B/12B encoding. This high speed serial data format consists of 10 data
bits plus 2 fixed insertion bits (01) to ensure a minimum of two transitions for every 12 bits in the serial data
stream.

Mode
Data
Code

Serial Data
Rate (Mbps)

Pay Load
Data Rate

(Mbps)

Parallel
Data/Clk

(MHz)
Parallel Data

Width

Serial/
Parallel
Ratio

Symbol
Alignment

Pattern
CDR

Support

SERDES without
Encoding/Decoding 8B/10B 400 to 850 320 to 680 40 to 85 10b

Encoded 10 K28.5 +/- CDR

SERDES with
Encoding/Decoding 10B/12B 400 to 850 333 to 708 33.3 to 70.8 10b

Raw Data 12 SymPat CDR

Source-Synchronous
(n channels) N/A 400 to 800 n x (400

to 800)

50 to 100
67 to 133

100 to 200

n x 8b
n x 6b
n x 4b

8
6
4

SymPat1

(De-skew)
De-skew
(optional)

1. In Source-Synchronous mode, only De-skew mode requires symbol alignment.

Lattice Semiconductor Introduction to the sysHSI Block / ispXPGA and ispGDX2

82

Source-Synchronous(SS) Modes
Some users are implementing source synchronous clocking to achieve high speed data transfer. Here the clock is
transmitted along with the data. This removes the propagation delay between the transmitter and receiver as a limit
on clock speed and performance. Skew control and other factors limit the maximum performance that can be
achieved using this method of data transfer. Multiple sysHSI blocks can be combined to create source synchro-
nous interfaces of different widths. The maximum width supported is device dependent. These interfaces can oper-
ate in two modes.

Normal Mode SS Mode (with Optional Phase Adjustment)
Normal Mode without Phase Adjustment:
In normal source synchronous mode data for each channel is captured using a common phase shifted version of
the incoming clock. This mode is useful in smaller devices where clock-tree skew is minimum.

Normal Mode with Phase Adjustment:
Optional Phase Adjustment is provided in this mode. The known skew adjustment phase value can be programmed
by user.

De-Skew SS Mode
In this mode, a calibration cycle allows the CDR circuitry to be used to select per channel different phases of the
incoming clock with which to capture the incoming data. This allows the device to compensate for fixed system
level skews. Thus allowing designers to achieve higher performance by conducting a calibration cycle at system
start up.

sysHSI Block
Each sysHSI Block includes two SERDES units and one CSPLL. Each SERDES unit consists of one receiver and
one transmitter circuit block. Each pair of receiver and transmitter can be used as a full duplex channel. For receiv-
ing, the SERDES receives high speed serial input data stream from the sysIO differential input buffer and provides
low speed parallel data associated with recovered clock to synchronizer or core logic. For transmitting, the SER-
DES converts the parallel low speed data to high speed serial data stream and sends the data to the sysIO LVDS
differential output buffers. Figure 1 shows high level representation of a sysHSI Block.

Figure 1. sysHSI Block Diagram

There is always a 10-bit wide data transmitted or received at the low speed side of the SERDES for both 10B/12B
and 8B/10B modes. In 10B/12B encoding mode, the start bit(1) and stop bit(0) are added or removed within the
sysHSI Block. In SERDES mode without encoding/decoding, (currently 8B/10B mode is supported), the encoding

SS MODE ONLY

sysIO

CORE
LOGIC

CORE
LOGIC

HSTCLK HSRCLK

sysHSI Block

TXD_A

TXD_B

RXD_B

RXD_A

REFCLK from
CLOCK TREE

TRANSMITTER

RECEIVER

TRANSMITTER

CSPLL

RECEIVER

SERDES (HSI_A)

SS_CLKOUT

SS_CLKIN

SOUT_A

SIN_A

SOUT_B

SIN_B

Synchro-
nizer

Synchro-
nizer

SERDES (HSI_B)

Lattice Semiconductor Introduction to the sysHSI Block / ispXPGA and ispGDX2

83

and decoding is done outside of sysHSI Block where 10-bit wide data is expected at the low speed side of the
SERDES. This is why the number of data bits at the parallel interface for 10B/12B and 8B/10B are same. In Source
Synchronous Mode, the low speed parallel data bits can be programmed to 4, 6 or 8.

The recovered clock is asynchronous to the on-chip reference clock. The solution to this problem is to use a syn-
chronizer. In systems where frequency deviation is not a problem this synchronizer can be bypassed.

CSPLL: Clock Synthesizer PLL
CSPLL (Clock Synthesizer PLL) multiplies low speed reference clock by the factor of v to achieve an high speed
serial data rate clock. The low speed reference clock input can be either from a chip internal clock, REFCLK, or
from an external LVDS clock input, SS_CLKIN. Also, there are 4 choices for the internal clock to increase the flex-
ibility.

\The multiplication factor, v, is the ratio of high speed vs. low speed. It can be 4, 6, or 8 for Source Synchronous
mode, 12 for 10B/12B and 10 for 8B/10B mode. CSPLL contains a fully monolithic analog PLL which does not
require any external component. For transmitter, the HSTCLK (High Speed Transmit Clock) is generated from REF-
CLK multiplied by factor of 'v', and is used to clock the high speed Serial Data Output.

For CDR operation, the CSPLL combined with a phase interpolation circuit, generate 16- phase high speed Clocks,
HSRCLK<0:15>(High Speed Receive Clock).

Figure 2. CSPLL

CSPLL HSRCLK (0:15)

1/16th
Phase
Shifter

Phase Select from CDR

M div

SS_CLKIN

REFCLK

HSRCLK

HSTCLKPD

V div

N div

VCO

SS_CLKOUT

CSLOCK

Lattice Semiconductor Introduction to the sysHSI Block / ispXPGA and ispGDX2

84

Clock and Data Recovery
Each receiver channel has its own CDRPLL (Digital Phase-Locked Loop: DPLL) for Clock Data Recovery. The
Clock Recovery module first extracts the embedded high speed clock from the Input Serial Data Stream by means
of the CDRPLL. Then the Data Recovery Module uses the recovered clock to read the data from the high speed
Input Serial Data Stream.

 The recovered high speed clock is divided by the factor, v, and aligned to produce the low speed clock, RECCLK
(RECovered CLocK). CDR then de-serializes the recovered high speed Serial Data into low speed Parallel Data.
This RECCLK and parallel data are sent to synchronizer or core logic.

Figure 3. Clock and Data Recovery Block

Serializer / De-Serializer(SER/DES)
Serializer
Transmitter receives low speed parallel Data, TXD, from the Synchronizer or Core Logic. TXD data is clocked by
REFCLK from clock tree (or SS_CLKIN in SS mode). The CSPLL multiplies REFCLK by factor of v to generate
HSTCLK. The Transmitter converts the low speed parallel Data, TXD, into high speed Serial Data Stream, SOUT,
that is running at HSTCLK. The alignment circuit synchronizes REFCLK and HSTCLK with edge detect circuit to
align SOUT with HSTCLK.

Figure 4. Serializer [SS, 8B/10B]

SIN

CDRRST

Clock / Data Recovery

Phase Select(0:15)

Recovered Serial Data

Align

CDRLOCK

EXLOSS LOSS

Recovered
HSR Clock

SYDT

1/ V

SYMBOL
DETECT

CDRPLL

Phase
Detect Digital

Filter
Phase
Shift

RECCLK

HSTCLK from CSPLL

LS Clock

(HSTCLK ÷ v)
from CSPLL

SERIALIZER
[SS, 8B/10B]

(SOUT)
to sysIO

Differential

Output Buffer

Qv-1

Q2

Q1

Q0

Parallel Load
Register

Qv-1

Q2

Q1

Q0

Parallel Sync
Register

Qv-1

Q2

Q1

Q0

Shift Register

Align

Parallel Load

v
B

it
W

id
e

P
ar

al
le

l D
at

a
(T

X
D

)
fr

om
 S

yn
ch

ro
ni

ze
r

or
 C

or
e

Lo
gi

c

Lattice Semiconductor Introduction to the sysHSI Block / ispXPGA and ispGDX2

85

De-Serializer
Receiver receives high speed serial data stream, SIN, from sysIO and de-serializes into low speed Parallel Data,
RXD, before it sends to Synchronizer or core logic.

Figure 5. De-Serializer [SS, 8B/10B]

Synchronizer
In the Receiver, the sysHSI Block writes with Recovered Clock (RECCLK) and the Core Logic uses system clock
(usually REFCLK) to read. Depending on devices, FIFO or Embedded Memory Block are used as a synchronizer.
The usage of a synchronizer is optional and may be bypassed if users performs synchronization outside of the
device.

Parallel Transmit Data enters Transmitter of sysHSI block from core logic clocked by REFCLK. The REFCLK at the
same time is fed to CSPLL to generate high speed clock to transmit serialized data (HSTCLK). In the Transmitter,
the REFCLK is re-aligned by high speed clock to generate parallel load clock to the Serializer shift register. If the
skew between REFCLK and high speed Clock at Transmitter is larger than one high speed Clock cycle then a syn-
chronizer is required. Since the CSPLL drives only two transmitter and two receiver channels, the skew is manage-
able without synchronizer. Figure 6 shows the synchronizer interface between core logic and receiver.

Figure 6. Synchronizer

RXD

Qv-1

Q2

Q1

Q0

Shift RegisterRecovered
Serial Data

Recovered

HSRCLK

Qv-1

Q2

Q1

Q0

Parallel Load

RegisterDE-SERIALIZER
[SS, 8B/10B]

LS Clock (HSRCLK ÷ v = RECCLK)

One of 16
Phase-shift

CLK
(HSRCLK)

from CSPLL

(SIN)
from sysIO
Differential
Input Buffer

v
B

it
W

id
e

P
ar

al
le

l D
at

a
(T

X
D

)
fr

om
 S

yn
ch

ro
ni

ze
r

or
 C

or
e

Lo
gi

c

C
lo

ck
 D

at
a

R
ec

ov
er

y
C

irc
ui

t (
C

D
R

P
LL

)

Synchronizer

Write
Data

Read
Data

Write
CLK Read

CLK

CORE
LOGIC

REFCLK from Clock Tree

SYNCHRONIZING RECOVERED DATA WITH CORE LOGIC

(SIN)
LVDS
Data

(SS_CLKIN)
LVDS
Clock

Receiver

RXD

RECCLK

CDRLOCK Write
EN

CSPLL

Lattice Semiconductor Introduction to the sysHSI Block / ispXPGA and ispGDX2

86

sysHSI Block and Source-Synchronous Mode with Multiple Data Channels
Each chip includes 2 groups of sysHSI Blocks. All sysHSI Blocks of the same group share the same LVDS clock
input/output in Source Synchronous mode.

In this mode, a whole group or a portion of a group can be used. The LVDS Clocks, SS_CLKIN and SS_CLKOUT,
are connected to dedicated pins. Each group can be configured as either Receive mode or Transmit mode but not
both. In Receive mode, the incoming LVDS Clock (SS_CLKIN) is the input clock to CSPLL as a reference clock . In
Transmit mode, the reference clock source is one of four clocks from the Clock Tree. The LVDS output Clock,
SS_CLKOUT is generated from the CSPLL of the dedicated sysHSI Block in each group.

An example of Source-Synchronous Mode Block diagram is shown in Figure 7. Figure 7 illustrates how the HSI cir-
cuit is implemented in Source-Synchronous Receiver Mode.

Figure 7. Source-Synchronous Mode Example Diagram (CDRX_SS_8)

sysIO

6 DATA CHANNELS and 1 CLOCK CHANNEL for CDRX_SS_8 Mode

CSPLL

CORE
LOGIC

TRANSMITTER

RECEIVER
HSI_ASIN_A

CORE
LOGIC

TRANSMITTER

RECEIVER
HSI_BSIN_B

SS_CLKIN

CSPLL

CORE
LOGIC

TRANSMITTER

RECEIVER
HSI_ASIN_A

CORE
LOGIC

TRANSMITTER

RECEIVER
HSI_BSIN_B

CSPLL

CORE
LOGIC

TRANSMITTER

RECEIVER
HSI_ASIN_A

CORE
LOGIC

TRANSMITTER

RECEIVER
HSI_BSIN_B

sysHSI Block_1

CSPLL

sysHSI Block_2

sysHSI Block_3

SYNCHRO
NIZER

RXD_A

RECCLK_A

SYNCHRO
NIZER

RXD_B

RECCLK_B

SYNCHRO
NIZER

RXD_A

RECCLK_A

SYNCHRO
NIZER

RXD_B

RECCLK_B

SYNCHRO
NIZER

RXD_B

RECCLK_B

SYNCHRO
NIZER

RXD_A

RECCLK_A

8

8

8

8

8

8

Lattice Semiconductor Introduction to the sysHSI Block / ispXPGA and ispGDX2

87

sysHSI Block Usage in CDR Mode
When both channels are used in a same sysHSI Block, they must share the same REFCLK, HSRCLK (High Speed
Receiver Clock) and HSTCLK (High Speed Transmitter Clock) from the CSPLL. Multiple modes may be imple-
mented using different sysHSI Blocks but user must take phase jitter from different clock sources into consider-
ation. This jitter increase may both receiver and transmitter performance to fall outside the guaranteed
specifications.

The two SERDES Blocks, HSI_A and HSI_B, in the same sysHSI Block are independent from each other except
sharing the same REFCLK and CSPLL.

sysHSI Block USAGE in Source-Synchronous Mode
When sysHSI Blocks are configured as Source-Synchronous mode, the whole group is not available for other
modes. But the sysIOs of unused sysHSI channels are available for other general I/O uses.

Using sysHSI Blocks in Design Tools
Macro Symbols
Thirteen Functional Macro modules are available representing seven different applications. These programmable
modules are described in Table 2. Additionally, two macros are provided for high speed loop back testing and are
supported for 8B/10B and 10B/12B modes.

Table 2. Macro Definitions

sysHSI Usage with HDLs
Synthesis tools such as Synplicity and Exemplar "black-box" the VHDL and Verilog instantiations and pass them
through an EDIF netlist to the Lattice software. The Lattice software converts the "black-box" into the physical rep-
resentation of the sysHSI within the device using the macros defined above. Verilog and VHDL pass the sysHSI
attributes through parameters and generics, respectively.

Unlike other HDLs, ABEL requires special additions to support sysHSI functionality, the Lattice design tools provide
direct support for ABEL and have been modified to support sysHSI functionality.

Mode Symbol Description

SS RX_SS_x1 SS normal receive mode (no de-skew)

CDRX_ SS_x SS De-skew receive mode

TX_ SS_x SS transmit mode

10B12B CDRX_10B12B 10B/12B CDR receive mode

TX_10B12B 10B/12B transmit mode

8B10B CDRX_8B10B 8B/10B CDR receive mode

TX_8B10B 8B/10B transmit mode

8B10B HSLB_8B10B 8B/10B High Speed Loop Back mode

10B12B HSLB_10B12B 10B/12B High Speed Loop Back mode

1. x: Data width, 4, 6 or 8 resulting the total number of macros are 15.

Lattice Semiconductor Introduction to the sysHSI Block / ispXPGA and ispGDX2

88

ispXPGA Family
The block diagram of LFX1200 is shown in Figure 8.

Figure 8. ispXPGA-1200 Block Diagram

sysMEM™ Embedded RAM (EBR) Usage as FIFO
spXPGA Family includes sysMEM Embedded Block RAM that can be programmed as a FIFO for synchronization.
For macros available for the EBR, please refer to Lattice technical note number TN1028, ispXPGA sysMEM Mem-
ory Design and Usage Guidelines

P
F

U

P
F

U

P
F

U

62 PICs

62 PICs

sysIO BANK 3sysIO BANK 2

sysIO BANK 6sysIO BANK 7

sy
sI

O
 B

A
N

K
 0

62
 P

IC
s

sy
sI

O
 B

A
N

K
 1

8 Prgrammable sysIO banks
62 PICs per bank
2 sysHSI Groups (left and right side)
Each sysHSI Group has 5 sysHSI Blocks

sy
sH

S
I B

lo
ck

 (
0,

 1
, 2

)

sy
sH

S
I B

lo
ck

 (
7,

 8
, 9

)
sy

sH
S

I B
lo

ck
 (

4,
 5

)

sy
sH

S
I B

lo
ck

 (
3,

 4
)

sy
sM

E
M

 B
lo

ck

sy
sM

E
M

 B
lo

ck
sy

sM
E

M
 B

lo
ck

sy
sM

E
M

 B
lo

ck

sy
sM

E
M

 B
lo

ck

sy
sM

E
M

 B
lo

ck

sy
sM

E
M

 B
lo

ck

sy
sM

E
M

 B
lo

ck
P

L
L

P
L

L
P

L
L

P
L

L

P
L

L
P

L
L

P
L

L
P

L
L

sy
sI

O
 B

A
N

K
 5

sy
sI

O
 B

A
N

K
 4

62
 P

IC
s

Lattice Semiconductor Introduction to the sysHSI Block / ispXPGA and ispGDX2

89

ispGDX2 Family
sysIO Banks and sysHSI Blocks
The ispGDX2 family devices are designed to minimize clock tree skew for high speed interface applications. The
sysHSI sub-blocks, HSI_A and HSI_B are routed to nearest sysIO Bank.

The ispGDX2-256 has 8 sysHSI Blocks. Each sysHSI Block is divided to two SERDES blocks, HSI_A and HSI_B.
Each SERDES block occupies 16 IO Cell Block in the sysIO Bank.

Figure 9. ispGDX2 sysIO Bank and sysHSI Block

B
A

A
B

B sysHSI_2 A

A B

B sysHSI_4 A

sy
sH

S
I_

5

sy
sI

/O
 B

an
k

5

sy
sI

/O
 B

an
k

2

sy
sI

/O
 B

an
k

6

sysI/O Bank 7 sysI/O Bank 0

sysI/O Bank 4 sysI/O Bank 3

sy
sI

/O
 B

an
k

1
sysHSI_6

A
B

B
A

ispGDX2-256
Core

sys
CLOCK

sys
CLOCK

sys
CLOCK

sys
CLOCK

A BsysHSI_0

sy
sH

S
I_

7

sy
sH

S
I_

1
sy

sH
S

I_
3

Lattice Semiconductor Introduction to the sysHSI Block / ispXPGA and ispGDX2

90

FIFO
sysHSI Block Interface with FIFO
The ispGDX2 Family includes dedicated FIFO for synchronization of recovered data. The FIFO is 15 x 10 and is
intended to support CDR. The usage of FIFO is optional.

Figure 10. sysHSI Block interface with FIFO in ispGDX2

HSTCLK

TXD

TRANSMITTER

RECEIVER

HSI

SOUT

SIN

 HSRCLK

LOSS

SYDT

CDRRST

EXLOSS

REFCLK (from Clock Tree)

SS_CLKIN

SS_CLKOUT

POR
RESETb

CDR/FIFO RESETb

sy
sI

O
 B

an
k

CSLOCK

CSPLL

GDX
BLOCK

START READ

FIFO
15 x 10

RESET
DATAOUT

RCLK

RE

FULL

EMPTY

START READ

DATAIN

WCLK

WE

RCLK

REN

FULL

EMPTY

RXD

RECCLK

CDRLOCK

