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ORCA® Series 3 FPGAs Programmable 1/0 Cell (PIC):
Logic, Clocking, Routing, and External Device Interface

Abstract

This application note describes the features and
advantages of the ORCA Series 3 FPGA program-
mable 1/0 cell (PIC). The Series 3 PIC architecture is
presented in detail. Methods for efficiently imple-
menting designs using the PIC architecture’s
resources are presented, using both synthesis tool
inferencing and source code instantiation. Several
novel applications which utilize some of the PIC’s
special features are presented, as well as methods
for implementing them.

Introduction

Modern digital electronic systems are being asked to
perform increasingly difficult tasks at greater speed,
with lower power, and in less space. Today’s systems
frequently utilize one or several high-speed micropro-
cessors, high-speed memory, and fast bus architec-
tures in order to squeeze the maximum system
speed out of the smallest area. These devices are
also migrating to lower voltages due to ever decreas-
ing device geometry and power consumption limita-
tions. Also, due to shrinking design times and system
flexibility needs, more designers are turning to pro-
grammable logic solutions. The latest crop of PLDs
and FPGAs have huge numbers of internal gates,
registers, and routing resources, all of which can
operate at extremely high core speeds. To take full
advantage of these internal capabilities in a high-
speed digital system, the design of the device’s inter-
face to the external system (I/O) must take all of the
internal and external requirements into account and
allow for very high-speed data transfers into and out
of the device.

The ORCA Series 3 FPGA family incorporates a hew
programmable I/O cell (PIC) which takes all of these
requirements into account. It has been designed to
allow for very high system speeds. It can interface to
external devices with several different voltage levels.
It has selectable power management and system
noise management features, and several special
built-in logic functions to directly interface to external
buses.

PIC Features and Benefits

The Series 3 PIC architecture has numerous features
which can be very beneficial to the designer. Gener-
ally speaking, the Series 3 PIC allows for a higher
frequency system interface than many other FPGAs
due to its register/latch and zero-hold capabilities. It
allows for greater flexibility in the electrical character-
istics of the 1/O signals. It can save on logic, regis-
ters/latches, and routing resources that would
otherwise be implemented in internal logic. It can
save power by allowing a lower-voltage core to inter-
face to a higher-voltage system (such as a 3.3V core
in a 5V system). It can also save power and reduce
noise/ground bounce by using different output driver
modes. Due to routing resources, it could save the
designer time and effort by allowing pins to be locked
much earlier in the design cycle. Finally, the PIC can
save cost by potentially allowing the design to fit into
a smaller array than would otherwise have been pos-
sible. Some of the PIC’s specific features and their
corresponding benefits can be seen in the following
tables.
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PIC Features and Benefits (continued)

Table 1. Input Features and Benefits

Input Features Benefits
TTL or CMOS compatible input levels Flexibility to interface to different external devices.
5V tolerant OR3Txx/OR3LxxxB Flexibility to operate in mixed voltage environments.
Programmable delay Ability to create fast zero-hold inputs.
100 kR pull-up/50 k2 pull-down Inputs can be defaulted without external resistors.
Input registered modes (latch, FF, LFF, Fast registered/latched inputs and/or zero-hold inputs without using
direct in) PLC resources.
Normal/inverted clock Fast, flexible input clocking without using PLC resources.
Two inputs (IN1, IN2) per I/O pin Flexibility to deMUX inputs, bring both signals into the device.
Clock input per 1/O pin Allows any input to drive an internal tree routing structure for use as

clocks on other high fan-out signal.

Table 2. Output Features and Benefits

Output Features Benefits
Two outputs (OUT1, OUT2) from array per | Flexibility to MUX outputs.
I/O pin
Selectable drive current Fast outputs or low-power outputs.
Normal or fast open drain Fast-shared-interrupt outputs.
Fast, slewlim, sinklim buffers Fast outputs or low-power, low EMI outputs.
100 kQ pull-up/50 k2 pull-down Outputs can be defaulted without external resistors.
Output from PIO FF or general routing Optional fast registered outputs without using PLC FFs.
Registered 3-state signal Fast-output enable without using PLC resources.
ECLK or SCLK FF resources Fast, flexible output clocking without using PLC.
Normal/inverted clock resources Fast, flexible output clocking without using PLC.
Output logic Gated clock outputs, pulses, decodes, etc.
Output MUXes Flexibility to MUX outputs.

Table 3. Control Signal Features and Benefits

Control Signal Features Benefits
CE—active-high or -low, or always on Allows for fast, flexible control of registered I/O without using PLC.
LSR—active-high or -low Allows for fast, flexible set/reset of registered 1/O without using PLC.
LSR—asynchronous or synchronous Allows for fast, flexible set/reset of registered 1/0O without using PLC.
LSR—ce_over_lsr, Isr_over_ce (sync) Allows for fast, flexible set/reset of registered 1/O without using PLC.
GSR—enable/disable Allows for fast, flexible set/reset of registered 1/O without using PLC.

Table 4. Grouping and Routing Features

Grouping and Routing Features Benefits
Four PIO per PIC, two PICs per pair Easier to create nibble and byte-wide oriented 1/O buses.
Routing structure similar to PLC Flexible routing allows pin locking of device prior to place and route.

Lattice Semiconductor 3
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PIC Architecture Description

Overview

The ORCA Series 3 PICs are located around the perimeter of the FPGA device (top, bottom, left, and right edges).
An ORCA Series 3 PIC interfaces to four bond pads and contains the necessary routing resources to provide an
interface between I/O pads and the PLCs. Each PIC is composed of four programmable 1/0Os (PIOs) and significant
routing resources to adjacent PICs and PLCs, as well as to the routing resources of the entire device. PICs are
grouped in pairs for purposes of routing. This allows the PIC’s architecture to handle nibble and byte wide buses
very efficiently. Each PIO contains input buffers, output buffers (3-statable), routing resources, latches/FFs, and
logic and can be configured as an input, output, or bidirectional 1/0. Each PIO can be configured for TTL or CMOS
level input mode. Each PIO can automatically accept 3.3 V or 5V referenced levels. Each PIO output can be
adjusted for speed and current drive capability.

Programmable Input/Output (PIO)

Figure 1 shows a Series 3 P10. Each PIO within a PIC can be logically divided into two blocks: input logic and out-
put logic. These two blocks share some common resources, namely the /O pad of the device, pull-up/pull-down
resistors, a system clock, an Express clock, controls for clock enable, local set/reset, and global set/reset. If the
pad is designed as bidirectional 1/O, then both blocks (input and output) of the P1O will be used. Also, note that if
the 1/0 pad is used only as an output, the input block remains active and its resources, such as pull-ups and pull-

downs, can be used.
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PIC Architecture Description (continued)

PIO Inputs

Each PIO input has six major options associated with it. These options are automatically selected when the corre-
sponding library elements are inferred or instantiated. They can also be manually selected in the EPIC editor.
These options are as follows:

» 3Cxxx input level: TTL or CMOS

» 3Txx input level: 5V tolerant (5 V PCI compliant) or 3V PCI compliant (clamped)

» 3LxxxB input level: 5V tolerant (5 V PCI compliant) or 3 V PCI compliant (clamped)
» Input speed: fast or delayed

» Float value: pull-up (100 k<), pull-down (50 k), none

» Input register mode: latch, FF, fast zero-hold FF, none (direct input)

= Input register/latch clock sense: inverted or noninverted

» Input selection: IN1, IN2, and/or clock input

P1O Outputs

Each PIO output has 10 major options associated with it. These options are automatically selected when the corre-
sponding library elements are inferred or instantiated. They can also be manually selected in the EPIC editor.
These options are as follows:

» Output drive current: 12 mA sink/6 mA source or 6 mA sink/3 mA source
= Output function: normal or fast open-drain

» Output speed: fast, slewlim, sinklim

» Output source: FF direct out, general routing

» 3-state source: FF direct out, general routing

= Output polarity: active-high or -low

» 3-state polarity: active-high or -low

» Output FF clock source: express, system

» Output register clock sense: inverted or noninverted

» Logic options: MUX options: OUT1/0OUT2, OUT1/OUTREG or OUT2/OUTREG,; logic options: AND, NAND, OR,
NOR, XOR, and XNOR (between OUT1/0UT2)

Lattice Semiconductor 5
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PIC Architecture Description (continued)

PIC Routing Resources

Each PIC provides routing resources between the four PIOs, adjacent PICs, adjacent PLCs, and to the rest of the
PICs and PLCs in the device. These resources include the following:

PIC pairs and adjacent PLCs

Output switching block: one per PIC, connects PIO outputs and controls to PIC routing resources
Clock spine switch block: one per PIC pair, connects PIC clock resources to global clock spines
pSW: two groups of eight lines per PIC, connecting to PIOs in groups of four

px1: five lines per PIC, traverse one PIC, broken by a CIP in middle of PIC

px2: five lines per PIC, traverse 2 PICs

px5: 10 lines per PIC, traverse 5 PICs

pxH: eight lines per PIC, traverse half of a side of the array

pxL: 10 lines per PIC, traverse entire side of the array

Routing buffers

Figure 2 shows the left PIC of a top edge PIC pair and part of the right PIC. Along the bottom of the image is a por-
tion of a PLC.

Lattice Semiconductor
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PIC Architecture Description (continued)
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Figure 2. Series 3 PIC in EPIC

PIC Clocking

All four PIO within a PIC share a common local system clock (SCLK), while all PICs on a given side of the device
share a common express clock (ECLK). These clocks can be used to control the PIO input register/latch, input
latch, output register, output logic, and output MUX. All four PIO within a PIC also share a common clock enable,
which can control the input register/latch and output register of each PIO. Both the clock and the clock enable can
be configured for active-high or active-low operation. The common system clock for a PIC can originate from the
system clock spine or from one of the local pSW routing segments.

Lattice Semiconductor 7
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PIC Architecture Description (continued)

Also, the direct CLKIN inputs from each PIO in the PIC pair (eight PIOs) and the local pSW segments are routed to
the system clock spine switching block, whose output drives the clock spines. This allows any I/O pin or internal
logic to drive the internal clock network allowing up to 40 global clocks per device. The common ECLK for a device
side originates from the CLKCNTRLXx function block which resides in the middle of the side of the FPGA on which
the PIC itself resides. This CLKCNTRLx function block is driven by the dedicated ECLK input pad on that side of
the FPGA or from the secondary ECLK pins in the lower-left and upper-right corners. These pin restrictions must
be followed for the ECLK pins, but they do yield improved system performance, especially for I/O setup times and
clock-to-out times. The overall Series 3 clock routing diagram for ECLK and system clock are shown in Figure 3.
This express clock delivers the fastest clock to output delays from a registered output.

PIC Set/Reset

All four P1Os within a PIC share a common local set/reset. This signal can be synchronous or asynchronous. If syn-
chronous, it can be set for CE_OVER_LSR or LSR_OVER_CE operation. The LSR can be configured for active-
high operation or active-low operation. Global set/reset can also be disabled.

CLKCNTRL]

&% \ﬁﬁ
¢j \\E CLOCKS

IZ IZ EXPRESSCLKS TO PIOs

5-5806(F)

Figure 3. Clock Routing
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Design Implementation

To use the Series 3 PIC’s features in an HDL design, you must determine whether the synthesis tools are inferring
the desired PIC resources from the generic HDL source code, and whether these PIC resources are being con-
nected to internal resources correctly. This can be done by viewing the synthesis output netlist, which for the
ORCA Foundry tool flow must be an EDIF file. You can view this EDIF file with any text editor. The EDIF file should
contain PIC library cell declarations and instantiations with names identical to those listed in the Series 3 macro
library (see cell tables below). Below is an EDIF netlist which uses several Series 3 PIC cells. The actual design is
not important, but notice the cell declarations in the top portion of the EDIF file and the instances in the lower por-
tion.

(edif pictest

(cell 1 FS1P3DX (cell Type GENERI C) <= PIC INPUT FLIP-FLOP
CELL PORTS HERE
CELL PROPERTI ES HERE
(cell OFS1P3DX (cell Type GENERI O <= PIC OUTPUT FLIP-FLOP
CELL PORTS HERE
CELL PROPERTI ES HERE
(cell OB12F (cell Type CGENERI C) <= FAST 70OUTPUT BUFFER
CELL PORTS HERE
CELL PROPERTI ES HERE
(cell OsSMUX21 (cell Type GENERI C) < PIC OUTPUT MUX
CELL PORTS HERE
CELL PROPERTI ES HERE
(cell 1LF2P3DX (cell Type GENERI C) <= PIC INPUT LATCHED FLIP-FLOP
CELL PORTS HERE
CELL PROPERTI ES HERE
(cell 1BM (cell Type GENERI O <= INPUT BUFFER
CELL PORTS HERE
CELL PROPERTI ES HERE

OTHER CELLS DECLARED HERE
(l'ibrary work
(edifLevel 0)
(technol ogy (nunberDefinition ))
(cell pictest (cell Type GENERI C)
(view structure (viewlype NETLI ST)
(interface
(port clk (direction |NPUT))
(port eckr (direction |NPUT)
(property loc (string "131"))) < ECKR PAD LOCATION
(port ckena (direction I NPUT))
OTHER PORTS HERE
SYNTHESIS DESIGN PROPERTIES HERE INSTANTIATIONS
(contents [
(instance right_xclk (viewRef NETLIST (cellRef CLKCNTLR (libraryRef orca3c ))
(instance ireg_ckena (viewRef NETLIST (cellRef |FS1P3DX (libraryRef orca3c ))
(instance gl _0_oreg_dout_a (viewRef NETLIST (cell Ref OFS1P3DX (libraryRef orca
)
)
)

)
)
c

))))
(instance gl_0_out _buf (viewRef NETLIST (cell Ref OB12F (libraryRef orca3c ))

(instance g1_0_adlatch (vi ewRef NETLIST (cellRef |FS1S1D (libraryRef orca3c
(instance gl_0_out _mux (viewRef NETLIST (cell Ref OSMJUX21 (libraryRef orca3c
(instance addr_dec (viewRef NETLIST (cellRef SAND8 (libraryRef orca3c ))))
(instance ireg_din_b (viewRef NETLIST (cellRef ILF2P3DX (libraryRef orca3c ))
(instance i x201 (viewRef NETLIST (cellRef GSR (libraryRef orca3c ))))
(instance ix205 (viewRef NETLIST (cellRef OB6 (libraryRef orca3c ))))
(instance ix222 (viewRef NETLIST (cellRef IBM (libraryRef orca3c ))))

OTHER CELLS INSTANTIATED HERE

NETS DECLARED HERE
(design pictest (cellRef pictest (libraryRef work ))))

~——

)
)
3
)
))
))
))

Lattice Semiconductor 9
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Design Implementation (continued)

If you do not wish to view the EDIF file in a text editor,
you may have another option. Most synthesis vendors’
tools support a schematic viewer. This viewer reads in
your EDIF netlist and displays the design in schematic
form, including cell references. For example, in Exem-
plar's Galileo Extreme* you can invoke a tool named
Netscope, which will display the entire netlist in sche-
matic form. It even has an option to invoke a text editor
to view the ASCII text version of the netlist simulta-
neously. With it you can highlight a symbol in the sche-
matic viewer, and it will automatically highlight the
cross-referenced instantiation in the EDIF file.

Some synthesis vendors’ tools might not infer these
elements. If the synthesis tools are not correctly infer-
ring the desired PIC resources (or not at all), then the
designer must resort to instantiating most (or all) of the
PIC resources directly into the source code.

Many of the newest synthesis tool releases do infer at
least some PIC resources. For example, Exemplar’s
Leonardo Spectrum®* tool will infer PIC registers from
generic VHDL source code. However, depending on
how the source code is written, there may be concerns
as to how those PIC registers connect to internal logic.
For example, if the source code defines some regis-
tered complex logic function, and that register output is
declared as an output pad, Leonardo Spectrum will
most likely place the register in a PIC cell. However, the
complex logic will be implemented inside PFU
resources in the core. There may be significant routing
delays to get from the PFU output to the PIC register
input.

You may also need the registered output to feed back
to other internal logic. It could be possible to rewrite the
source code to force synthesis to place the logic and
register together in a PFU, but then the register output
must route to a nonregistered I/O. Or you could leave
the register in the PIC, declare the pad as an in/out
bidirectional pad and use the input register in the same
P10 to bring the signal back into the device.

This trade-off between internal registering and PIC reg-
istering can be eliminated by double-registering syn-
chronous signals destined for output. Thus, the
complex logic has a short route inside a PFU to be reg-
istered, and this register can feed other internal logic
as well as the PIC register which drives the fast output.
No in/out pad is required (unless the signal is sup-
posed to be a bidirectional bus already). The VHDL
code below illustrates some of these concepts.

* Galileo Extreme and Leonardo Spectrum are trademarks of Exem-
plar Logic, Inc.

10

-- VHDL netlist for testing 3C/3T PIC architecture

-- Specifically with Spectrum tool inferring PIC cells
library IEEE;

use IEEE.std_logic_1164.all;

entity spectrum_test is

port ( clk, resetn: in std_logic;
ain, bin, cin: in std_logic;
aout, bout, cout, dout: out std_logic;
eio: inout std_logic;
tri: in std_logic;
fout: out std_logic );

end spectrum_test;

architecture Behavioral of spectrum_test is
signal reg_a, reg_b, reg_c: std_logic;
signal reg_d, reg_e, reg_f: std_logic;
begin
synch: process (clk, resetn)
begin
if (resetn ='0") then
reg_a<='0";reg_b <='0";reg_c <='0";
reg_d <='0";reg_e <='0";reg_f <="0"
aout <='0"; bout <="'0"; cout <="'0"
dout <='0"; fout <="'0";
elsif (cIKEVENT and clk = '1') then
reg_a <= ain;
aout <=reg_a;
reg_b <= bin;
bout <=reg_b;
reg_c <= cin;

if reg_a="1"andreg_b ='1'and reg_c = '1") then cout

else cout <='0";
end if;

if reg_a="1"and reg_b ='0"and reg_c ='0") then reg_d

else reg_d <='0"
end if;
dout <=reg_d;

if reg_a="'0"and reg_b ="1"and reg_c ='1') then reg_e
<="0"%

else reg_e <="'1";

end if;

reg_f <= eio;
fout <=reg_f;
end if;
end process synch;
eio <=reg_e when tri = '1' else 'Z';
end Behavioral,

Lattice Semiconductor
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Design Implementation (continued) /O Cells for Use with Series 3

When this code is synthesized by Leonardo Spectrum, Table 5. Input Buffer Cells

the following is implemented: Cell TTL | CMOS| Pull-Up | Pull-Down| Delay

1. reg_a, reg_b and reg_c are all input registers in IBM _ v _ _ _
separate PIOs. IBMS — 7 — — v

2. reg_adrives another register in a different PIO, IBMPD — v — v —
which drives the aout pad. reg_b drives another
register in a different PIO, which drives the bout IBMPDS | — v — v v
pad. IBMPU — 4 v — —

3. The combinatorial logic (LUT) which drives cout is IBMPUS | — v v — v
placed in a PFU. However, the register is placed in a IBT \ _ _ _ _
PIO, and this register drives the cout pad. IBTS v — — — v

4. reg_d is a register inside a PFU, driven by combina- IBTPD v — — v —
torial logic (LUT) in the same PFU. reg_d then IBTPDS | V — — v 4
drives a register in a separate PO which drives the IBTPU v — v — _
dout pad. IBTPUS | Vv | — v — vV

5. eiois a bidirectional pad, driven by reg_e.reg_e is Notes:

an output register in the same PIO as the eio pad.
However, the combinatorial logic (LUT) which drives
reg_e is placed in a PFU. reg_fis an input register
in the same PIO as the eio pad. reg_f drives Delay is dependent on speed grade and array, but guarantees zero-
another register in a different P10. This register hold.

drives the fout pad.

Pull-ups are 100 kQ.
Pull-downs are 50 kQ.

Notice that reg_d could fan out to many places inside
the array without adversely affecting douts clock-to-out-
put timing.

PIC Library Cells

There are numerous ORCA Series 3 macro library
cells that may be used to map to PIC resources such
as input buffers, output buffers, bidirectional buffers,
P10 gates, PIO multiplexers, P10 input flip-flops, PIO
output flip-flops, P10 input latches, and PIO input
latched flip-flops. Some of these library cells may not
be inferred by the synthesis tools, depending on which
version of synthesis tools are being used. Therefore, in
many cases, the user must instantiate these library
cells into his/her source code to achieve the desired
function. Shown below is a list of the available I/O and
P10 cells for Series 3, and a checklist of features:

Lattice Semiconductor 11
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Design Implementation (continued)
Table 6. Output Buffer Cells

Cell Sinklim | Slewlim | Fast | 3-State | Pull-Up | Pull-Down

OB6 v — —
OB12 — v —
OB12F —
OBZ6 v

OBZ6PD v — —
OBZ6PU v —

OBZ12 — v
OBZ12PD — v —
OBZ12PU — v

OBZ12F — — v
OBZ12FPD — — v
OBZ12FPU — — v

SR SENENESESENENENE
<
|

Notes:
Sinklim is 6 mA sink and 3 mA source.

Slewlim is 12 mA sink and 6 mA source.
Fast is 12 mA sink and 6 mA source.
Pull-ups are 100 kQ.

Pull-downs are 50 kQ.

Table 7. Bidirectional Buffer Cells

Cell CMOS L Sinklim | Slewlim | Fast | 3-State | Pull-Up| Pull-Down
Input Input

— v — —
_ i — —
— v

BMZ6
BMZ6PD
BMZ6PU
BMZ12
BMZ12PD
BMZ12PU
BMZ12F
BMZ12FPD
BMZ12FPU
BTZ6
BTZ6PD
BTZ6PU
BTZ12
BTZ12PD —
BTZ12PU —
BTZ12F —
BTZ12FPD —
BTZ12FPU —

Notes:
Sinklim is 6 mA sink and 3 mA source.

AR SENENENESENENEN
|
|
<=
|

|
|
|
< =<

SN RSN NN NS Y R RS Y A A RS R R RS
<.
|

SR SESENENESESENENN
|
<|<|<|
|

Slewlim is 12 mA sink and 6 mA source.
Fast is 12 mA sink and 6 mA source.
Pull-ups are 100 kQ.

Pull-downs are 50 kQ.
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Design Implementation (continued)

Table 8. Bidirectional Buffer with Delayed Input Cells

Cell CMOS | TTL 1 gikiim | Slewlim | Fast | 3-State | Pull-Up | Pull-Down
Input Input

— v — —
— v — —
— v

BMS6
BMS6PD
BMS6PU
BMS12
BMS12PD
BMS12PU
BMS12F
BMS12FPD
BMS12FPU
BTS6
BTS6PD
BTS6PU
BTS12
BTS12PD —
BTS12PU —
BTS12F —
BTS12FPD —
BTS12FPU —

<<=y =
|
|
<<
|

|

|

|
<<

NS S S 1 1 1 <
<

SSESENENENESENESEN
|
<<
|

|
|
<<

Notes:

Sinklim is 6 mA sink and 3 mA source.

Slewlim is 12 mA sink and 6 mA source.

Fast is 12 mA sink and 6 mA source.

Pull-ups are 100 k<.

Pull-downs are 50 kQ.

Delay is dependent on speed grade, but guarantees zero-hold.

Table 9. PIC Cells for Use with Series 3

Cell Type System Clock | Express Clock

OEAND2 2 Input AND —
OEND2 2 Input NAND —
OENR2 2 Input NOR —
OEOR2 2 Input OR —

OEXNOR2 2 Input XNOR

OEXOR2 2 Input XOR

OSXNOR2 2 Input XNOR
OSXOR2 2 Input XOR

OSAND2 2 Input AND v —
OSND2 2 Input NAND v —
OSNR2 2 Input NOR v —
OSOR2 2 Input OR v —

v
v
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Design Implementation (continued)

Table 10. PIC Multiplexer Cells

Cell Type System Clock Express Clock
OEMUX21 | 2to 1 MUX — v
OSMUX21 | 2to 1 MUX 4 —

Table 11. PIC Input Flip-Flop Cells

Cell S():llsotslin Clock Asynch. Asynch. Synch. Synch. Synch. Synch.
Enable Preset Clear Clear 1 Clear 2 | Presetl | Preset?2
(t Edge)
IFS1P3BX v v v — — — — —
IFS1P3DX v v — v — — — —
IFS1P3IX 4 4 — — v — — —
IFS1P3I1Z v v — — — v — —
IFS1P3JX v v — — — — v —
IFS1P3JZ 4 4 — — — — — 4
Notes:

All control signals are positive level.
Synch. Clear 1 is clear overrides enable. Synch. Clear 2 is enable over clear.

Synch. Preset 1 is preset overrides enable. Synch. Preset 2 is enable over preset.

Table 12. PIC Output Flip-Flop Cells

Express | System Clock | Asynch. | Asynch.| Synch. | Synch. | Synch. Synch.
Cell Clock Clock Enable | Preset Clear Clear 1 | Clear 2 | Preset 1| Preset 2
(t Edge) | (* Edge)
OFE1P3BX v — v 4 — — — — —
OFE1P3DX v — v — + — — — —
OFE1P3IX v — v — — - _ _ —
OFE1P3IZ v — v — — — v — —
OFE1P3JX v — v — — — — v _
OFE1P3JZ v — v — — — — — 4
OFS1P3BX — v v 4 — — — — —
OFS1P3DX — v v — v — — — —
OFS1P3IX — v v _ _ v — — —
OFS1P3IZ — v v — — — v — —
OFS1P3JX — v v — — — — v —
OFS1P3JZ — ' v — — — — — 4
Notes:

All control signals are positive level.
Synch. Clear 1 is clear overrides enable. Synch. Clear 2 is enable over clear.

Synch. Preset 1 is preset overrides enable. Synch. Preset 2 is enable over preset.
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Design Implementation (continued)

Table 13. PIC Input Latched Flip-Flop Cells

System Express
Clocked System | Clocked Asynch. | Asynch.| Synch. | Synch. | Synch. | Synch.
Cell . Clock Latch
Flip-Flop . Preset Clear Clear 1 | Clear 2 | Preset 1| Preset 2
(1 Edge) Enable | (Negative
Level)
ILF2P3BX v v v v — — — — —
ILF2P3DX 4 4 4 — 4 — — — —
ILF2P3IX v v v — — v — — —
ILF2P3IZ v v v — — — v — —
ILF2P3JX 4 4 4 — — — — v —
ILF2P3JZ v v v — — — — — 4
Notes:

All control signals are positive level except Express clock input.
Synch. Clear 1 is clear overrides enable. Synch. Clear 2 is enable over clear.

Synch. Preset 1 is preset overrides enable. Synch. Preset 2 is enable over preset.

Table 14. PIC Input Latch Cells

Cell System é:rl]c;([;lfsd Latch Asynch. Preset | Asynch. Clear | Synch. Clear | Synch. Preset
IFS1S1B v v — — —
IFS1S1D v — v — —
IFS1S1l v — — 4 —
IFS1S1J v — — — v

Note: All control signals are positive level.
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I/O Cell and PIC Cell Instantiation in VHDL

If your synthesis tool will not infer the PIC resources you desire, you must instantiate them in your design.

In order to instantiate any component into a VHDL design, the component black box must first be declared in the
architecture. For example:

-- VHDL netlist for testing 3C/3T PIC architecture: Example 1

library |IEEE;

use IEEE.std_logic_1164.all;

entity pic_examplel is

port ( clk, eckr :in std_logic;
ckena, clear, tri : in std_logic;
datai, datao  :in std_logic);

attribute LOC : string;
attribute LOC of eckr : signal is "131"; -- 208 pin package
end pic_examplel,;

architecture Structure of pic_examplel is

-- internal signal declarations

signal drhi, drlo: std_logic;

signal eckr_int : std_logic;

signal datai_int : std_logic;

signal rdatal, rdata2 : std_logic;

signal datao_int : std_logic;

-- local component declarations
COMPONENT vhi -- logic ‘1’ driver
PORT( z: OUT std_logic :='X");
END COMPONENT;

COMPONENT vlo -- logic ‘0’ driver
PORT( z: OUT std_logic :='X");
END COMPONENT;

COMPONENT clkentlr -- clock controller, right edge
PORT( clkin : IN std_logic := "X’

shutoff : IN std_logic := "X

clkout : OUT std_logic :='X");
END COMPONENT;

COMPONENT ibmpus -- CMOS input buffer, pullup & delay
PORT( i: IN std_logic :="'X";

0: OUT std_logic);
END COMPONENT;

COMPONENT ilf2p3dx -- PIC input latched FF
PORT( d :IN std_logic := "X

sp :IN std_logic :='X";

eclk: IN std_logic :='X";

sclk: IN std_logic :='X";

cd :IN std_logic :="'X’;

g :OUT std_logic :='X");
END COMPONENT;

COMPONENT fd1p3dx -- PLC flip-flop
PORT( d:IN std_logic :='X";
sp: IN std_logic :='X";
ck: IN std_logic :='X";
cd: IN std_logic := "X’
g : OUT std_logic :="'X};

Note: IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.
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I/O Cell and PIC Cell Instantiation in VHDL (continued)

gn: OUT std_logic :='XY);
END COMPONENT;

COMPONENT ofs1p3dx -- PIC output FF, System clock
PORT( d:IN std_logic :='X";

sp: IN std_logic :='X";

sclk: IN std_logic :='X";

cd: IN std_logic := "X’

g : OUT std_logic :='X");
END COMPONENT;

COMPONENT obz12fpd -- fast output buffer,3-state, pull-down
PORT( i: IN std_logic :="'X";
t: IN std_logic := "X
0: OUT std_logic);
END COMPONENT;
begin

end Structure;

Note a convenient source of PIC components (or any ORCA components for that matter) can be found in a VHDL
source library file called orcacomp.vhd. Entire component declarations can be copied from this file directly into the
design source code.

The component may then be instantiated as many times as desired in the design. For example, . ..

-- VHDL netlist for testing 3C/3T PIC architecture: Example 1
library IEEE;
use IEEE.std_logic_1164.all;

entity pic_examplel is
end pic_examplel;

architecture Structure of pic_examplel is
-- internal signal declarations
-- local component declarations
begin
-- component instantiation statements
drive_hi: vhi port map (drhi);
drive_lo: vlo port map (drlo);
right_xclk: clkentlr port map (eckr, drlo, eckr_int);
in_buffer: ibmpus port map (datai,datai_int);
in_req: ilf2p3dx port map(datai_int, ckena, eckr_int, clk, clear, rdatal);
pic_reg: fd1p3dx port map(rdatal, ckena, clk, clear, rdata2); -- qn not mapped
out_reg: ofslp3dx port map(rdata2, ckena, clk, clear, datao_int);
out_buffer: obz12fpd port map(datao_int,tri,datao);
end Structure;

If the design is being synthesized, the Foundry mapper will see the black-box components and use the appropriate
library elements. However, for simulation, the components must be configured using the supplied simulation librar-
ies. Set up the simulator to point to the correct directory. (For MTI, use the vsystem.ini or modelsim.ini file to do
this). Then use a configuration block to tell the simulator which library elements to use for each instance. For exam-
ple, ...

-- VHDL netlist for testing 3C/3T PIC architecture: Example 1

-- vsystem.ini or modelsim.ini contains : “ORCA3 = $FOUNDRY/vhdl/data/orca3/mti/work”
-- where $FOUNDRY points to the Foundry tools base directory

library IEEE, ORCAS;
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I/O Cell and PIC Cell Instantiation in VHDL (continued)

use |EEE.std_logic_1164.all;
use ORCA3.orcacomp.all;

entity pic_examplel is

end pic_examplel,;

architecture Structure of pic_examplel is
end Structure;

configuration Structure_CON of pic_examplel is
for Structure
for all: vhi  use entity ORCA3.vhi(V);  end for;
forall: vio  use entity ORCA3.vlo(V);  end for;
for all: clkentlr use entity ORCAS.clkentlr(V); end for;
for all: ibmpus use entity ORCA3.ibmpus(V); end for;
for all: iif2p3dx use entity ORCA3.ilf2p3dx(V); end for;
for all: fd1p3dx use entity ORCA3.fd1p3dx(V); end for;
for all: ofs1p3dx use entity ORCA3.ofs1p3dx(V); end for;
for all: obz12fpd use entity ORCA3.0bz12fpd(V); end for;
end for;
end Structure_ CON;

I/O Cell and PIC Cell Instantiation in Verilog*

Declaring and instantiating components into a Verilog design is even easier. Simply declare Verilog modules from
the library with instance names, and map the ports accordingly. (The Verilog library modules are each stored as a
separate Verilog file (module_name.v) in /ffoundry_directory/verilog/data/orca3.) Here is an example of the same
circuit rewritten in Verilog:

/I Verilog design for testing 3C/3T PIC: Example 1
module PIC_EXM1(CLK,ECKR,CKENA,CLEAR,TRI,DATAI,DATAO);
input CLK,ECKR,CKENA,CLEAR,TRI,DATAI,
output DATAO;
reg RDATA1, RDATA2;
wire DRHI, DRLO, ECKR_INT, DATAI_INT, DATAO_INT;
// instantiate components
VHI VH1 (DRHI);
VLO VL1 (DRLO);
CLKCNTLR CL1 (ECKR, DRLO, ECKR_INT);
IBMPUS IB1 (DATAI, DATAI_INT);
ILF2P3DX ILF1 (DATAI_INT, CKENA, ECKR_INT, CLK, CLEAR, RDATA1);
FD1P3DX FF1 (RDATAL, CKENA, CLK, CLEAR, RDATA2); // QN not mapped
OFS1P3DX OF1 (RDATA2, CKENA, CLK, CLEAR, DATAO_INT);
OBZ12FPD OB1 (DATAO_INT,TRI,DATAO);
endmodule

To simulate this design, you will need to include the libraries of all Series 3 modules you wish to instantiate. On a
UNIXT workstation, you can modify your design to add the following compiler directives to the top of your Verilog
source code (where /foundry_directory is the path to the ORCA Foundry tools base directory):

“‘timescale 1 ns/ 100 ps

“include "/foundry_directory/verilog/data/orca3/VHI.v"
‘include "/foundry_directory/verilog/data/orca3/VLO.v"
‘include "/foundry_directory/verilog/data/orca3/CLKCNTLR.v"
‘include "/foundry_directory/verilog/data/orca3/IBMPUS.v"
“include "/foundry_directory/verilog/data/orca3/ILF2P3DX.v"

* Verilog is a registered trademarks of Cadance Design Systems, Inc.
TUNIX is a registered trademark of X/Open Company, Ltd.
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I/O Cell and PIC Cell Instantiation in VHDL (continued)

‘include "/foundry_directory/verilog/data/orca3/FD1P3DX.v"
“include "/foundry_directory/verilog/data/orca3/OFS1P3DX.v"
‘include "/foundry_directory/verilog/data/orca3/OBZ12FPD.v"

module PIC_EXM1(CLK,ECKR,CKENA,CLEAR, TRI,DATAI,DATAO);

end module

Or, you can just specify the library directory when compiling for simulation at the command prompt. For example,
in MTI:

vlog -y $FOUNDRY /verilog/data/orca3 +libext+.v design.v
where $FOUNDRY points to your Foundry tools’ base directory, and design.v is your top level source code.

Express Clock Instantiation in VHDL and Verilog

If PIC output flip-flops are used, the designer has the option of using an Express clock or a system clock. Also, if
PIC input latched flip-flops are used, the designer must use Express clock to enable the latch. Also, several of the
PIC gates and one of the PIC multiplexers accept express clock as an input. However, to use an Express clock, the
designer must remember to instantiate the correct clock controller (CLKCNTLXx) or programmable clock manager
(PCM) in the design and LOC its corresponding input pad (ECKx or SECKxx). The choice of clock controller
depends on which edge of the array the PICs in question reside on. If there are PICs on all four edges of the device
which require Express clock, then either of the following must occur:

1. Instantiate all four clock controllers and LOC all four ECKx pads.
2. Instantiate both PCMs and LOC both corner SECKxx pads.
3. A combination of 1. and 2. which guarantees that all PICs are getting an Express clock.

Here is a short example of how to instantiate a CLKCNTLR cell and LOC its ECKR pad using attributes in VHDL
source code. This design was targeted at an OR3T55 in a 208-pin SQFP package.

-- VHDL netlist for demonstrating 3C/3T express clock instantiation
library IEEE, ORCAS;

use IEEE.std_logic_1164.all;

-- use ORCA3.orcacomp.all;

entity pictest is
port ( clk:in std_logic;
eckr:in std_logic; <= ECKR PORT LISTED
-- other ports declared here

)
attribute LOC : string;
attribute LOC of eckr : signal is "131"; < ECKR PAD LOCATION ATTRIBUTE
end pictest;

architecture Structure of pictest is
-- internal signal declarations
signal drlo  : std_logic;
signal eckr_int: std_logic;
-- other signals declared here
-- local component declarations
COMPONENT clkentlr <= RIGHT CLOCK CONTROLLER COMPONENT
PORT( clkin : IN std_logic := "X}
shutoff : IN std_logic :='X;
clkout : OUT std_logic :='X");
END COMPONENT;

COMPONENT vlo
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I/O Cell and PIC Cell Instantiation in VHDL (continued)

PORT( z: OUT std_logic :="X" );
END COMPONENT;
-- other components declared here
begin
-- component instantiation statements
drive_lo: vio
port map (drlo);

right_xclk: clkcntlr <= RIGHT CLOCK CONTROLLER INSTANTIATED
port map (eckr,

drlo, -- assumes direct port mapping

eckr_int);

-- other components instantiated here
end Structure;

Here is the same example using Verilog source code. The ECKR pin location must be specified using the synthesis
tools.

/I Verilog design for testing 3C/3T PIC: Example 1
module PIC_EXM1(CLK,ECKR, ...);

input CLK,ECKR, ...;

output ...;

reg
wire DRLO, ECKR_INT, ...;

/l instantiate components
VLO VL1 (DRLO);
CLKCNTLR CL1 (ECKR, DRLO, ECKR_INT);

endmodule
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Methods to Assign Special Properties to PIC Resources

The I/O registers, latches, buffers, pads, and other resources in each PIC frequently need additional information
assigned to them in order to allow the Foundry tools to implement a functioning design with the desired timing.
Things such as I/0 pad locations, frequency, input setup times, clock-to-output times, output loads, etc, may need
to be specified. The primary method of passing this information to the Foundry tools is through the preference file.
However, other methods may exist to pass this information into the preference file, such as via VHDL attributes,
synthesis directives, or by using a logical preference file. One advantage of the logical preference file is the ability
to use wildcards to specify net names.

Methods to LOC I/O Pins
Source Code

There are several ways to assign the input and output pins of your design to the physical pad locations of the
device. If you are using VHDL, you can make these assignments in the source code using attribute statements and
the LOC property. The synthesis tool will pass this information into the EDIF file, and the mapper will convert them
into the preference file. For example, to assign input name to pad 77:
entity pictest is
port ( name: in std_logic;
-- other ports declared here
attribu’te LOC : string;

attribute LOC of name : signal is "77";
end pictest;

In Verilog, there is no method of assigning pad locations to your 1/O.
Preference File

The preference LOCATE command can be inserted into the preference file (.prf) to dictate where an I/O pad should
be placed. For example, consider the following line in a preference file:

LOCATE COMP “name” SITE “77”;

This will force the Foundry tools to place the pad for signal name at pin 77 of the device.

Logical Preference File

There is no way to locate 1/O pads in a logical preference file.

Synthesis Tools

Your synthesis tools will usually also have a method of entering I/O pad assignments using some commands and/
or constraint file. This information should be converted into a Foundry preference file (.prf) for use by the Foundry

tools, or inserted into the EDIF file during synthesis, in which case the mapper will convert them to preferences.
Refer to your synthesis vendor’s documentation.
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Methods to Assign Special Properties to PIC Resources (continued)

Methods to Specify PIC Timing Constraints: Input Setup (to a PIC Input Register)
An input setup time specifies a setup time requirement for registered input ports relative to a clock net.
Preference File

The OFFSET IN command can be used in the preference file to dictate an input’s setup time. For example:
OFFSET IN COMP “inport_name” 5.0 NS BEFORE COMP “clk”;

Logical Preference File (Use Ip2prf to Translate into a Preference)

INPUT_SETUP inport_name 5 NS CLKNET = “clk”;

Methods to Specify PIC Timing Constraints: Clock to Output (from a PIC Output Register)

A clock-to-output time specifies a maximum allowable output delay for registered output ports relative to a clock
net.

Preference File

The OFFSET OUT command can be used in the preference file to dictate an output’s clock-to-output time. For
example:

OFFSET OUT COMP “outport_name” 20.0 NS AFTER COMP “clk”;

Logical Preference File (Use Ip2prf to Translate into a Preference)

CLOCK_TO_OUT outport_name 20 NS CLKNET = “clk”;

Methods to Specify PIC Timing Constraints: Frequency/Period (from/to a PIC register)

A frequency or period value specifies the minimum frequency (or maximum period) at which sequential circuits
must operate. When applied to PIC registers, it can apply to the timing between a PIC register and a PLC register,
or between PIC registers. Note that this preference takes into account all logic and routing delays and any clock
skew, so it is the most reliable method of preferencing a synchronous circuit’'s speed of operation. A FREQUENCY
or PERIOD command can be used in the preference file to dictate a synchronous circuit’s required clock rate. For
example, for a fully synchronous 50 MHz design with clock input clk:

Preference File

FREQUENCY NET “clk” 50 MHz;
or
PERIOD NET “clk” 20 NS HIGH 10 NS;

Logical Preference File (Use Ip2prf to Translate into a Preference)
FREQUENCY PORT “clk” 50 MHz;

or
PERIOD PORT “clk” 20 NS HIGH 10 NS;
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Methods to Assign Special Properties to PIC Resources (continued)
Methods to Specify PIC Timing Constraints: Multicycle (from/to a PIC Register)

A multicycle value specifies a relaxation of a previously specified FREQUENCY or PERIOD preference on a syn-
chronous path(s). For example, if one portion of a synchronous design may only need to operate at one-half the
clock frequency of the rest of the design, then a 2X multicycle value may be assigned to those paths. When applied
to PIC registers, remember that you wish to create a preference from FF to FF, not to an I/O pad. For example, sup-
pose we want a multicycle preference from a PLC register to a PIC output register:

Preference File

MULTICYCLE “M1” START COMP “PFU_n" NET “net_name” END COMP “outport_name” 2 X;

M1 is just a label. PFU_n is a physical PFU name, net_name is a physical net name, and outport_name is an
actual output port name.

Logical Preference File (Use Ip2prf to translate into a preference)

MULTICYCLE FROM CELL “plcreg” TO CELL “pic_outreg” 2 X;

In this correct implementation, plcreg and pic_outreg are instance names of registers. The synthesis tool may cre-
ate register instance names that differ drastically from names in the source code. Also note that this is not the
same as the following incorrect line:

MULTICYCLE FROM CELL “plcreg” TO PORT “outport_name” 2 X;

This line creates a timing preference from a PLC register output all the way to an output pad named outport_name.
This will create a define path preference and a maxdelay preference on that path in the .prf file when Ip2prf is exe-
cuted.

Other PIC Timing Information

Preferences, logical preferences, VHDL properties, and synthesis vendor commands also exist for specifying the
following timing values. Refer to the ORCA Foundry documentation CD or your synthesis vendor’s documentation
for information on how to implement these values.

maxdelay—Specifies a maximum total delay for a net or path. When applied to PIC timing, it is recommended that
it should only be used for asynchronous /O timing, either between some internal PLC logic and a PIC resource, or
between a PIC resource and an external pad. If a PIO is being used synchronously, use the previously described
synchronous preferences instead.

maxskew—Specifies a maximum signal skew between a driver and loads on a specified clock signal. When
applied to PIC timing, it refers to the ECLK or SCLK signal which drives the corresponding PICs.

Other I/O Features

Preferences, logical preferences, VHDL properties, and synthesis vendor commands also exist for specifying such
values as output load, slew rate, and input delay mode. Refer to the ORCA Foundry documentation CD or your
synthesis vendor’'s documentation for information on how to implement these values.
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Methods to Assign Special Properties to PIC Resources (continued)

Applications
Microprocessor and/or Bus Interface with MUXed/deMUXed Address/Data

The Series 3 PIC is well designed for applications requiring an interface to external multiplexed address and data
buses, such as may be found on various types of microprocessor buses (Intel i960*) and system buses (PClI,
VMEG64). In one case, the PICs may have to receive a multiplexed address/data bus and demultiplex it for internal
use. In another case, the PICs may have to multiplex internal address and data to drive an external bus. In a bus
with master/slave arbitration, the PICs may have to do both multiplexing and demultiplexing using bidirectional
I/0.

* Intel and i960 are registered trademarks of Intel Corporation.
Case 1: Input Demultiplexer (same clock for address and data)

To demultiplex an incoming address/data bus, the PIO latch or FF can be used to store one bit of the address on
one edge of the SCLK, while an adjacent PLC FF stores a bit of the data on the other edge. This is shown in Figure
4. For example:

-- VHDL netlist for testing 3C/3T PIC architecture
-- Input Demultiplex

library IEEE, ORCAS;
use |EEE.std_logic_1164.all;
COMPONENT ifslsid -- PIC input latch
PORT(d: IN std_logic := "X
sclk: IN std_logic :='X";
cd :IN std_logic := "X
g :OUT std_logic :="X'");
END COMPONENT;

COMPONENT fd1p3dx -- PLC flip-flop
PORT(d : IN std_logic := "X
sp: IN std_logic := "X
ck: IN std_logic :='X;
cd: IN std_logic := "X}
g : OUT std_logic :=
gn: OUT std_logic :=
END COMPONENT;

X
X

COMPONENT vhi
PORT( z: OUT std_logic :='X");
END COMPONENT;

COMPONENT vlo
PORT( z: OUT std_logic :='X');
END COMPONENT;

COMPONENT sand8 -- SLIC and8
PORT(a: IN std_logic :='X";
b: IN std_logic :=
c: IN std_logic :
d: IN std_logic :
e: IN std_logic :
f: IN std_logic :
g: IN std_logic :
h: IN std_logic :='X;
z: OUT std_logic :='X");
END COMPONENT;

N
e
X"
X

NS
NG
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begin
-- component instantiation statements

drive_hi: vhi port map (drhi);

drive_lo: vlo port map (drlo);

gl:foriin O to 7 generate
pio_latch: ifsls1d port map (adin(i), clk, drlo, abus(i));

plc_reg: fd1p3dx port map (adin(i), csel, clk, drlo, dbus(i)); -- gn output not specified
end generate;

addr_dec: sand8
port map (abus(0), abus(1), abus(2), abus(3),
abus(4), abus(5), abus(6), abus(7),
csel);
end Structure;

Case 2: Input Demultiplexing (seperate data clock and address enable)

If an address enable is used to latch the address instead of the clock, it is done by replacing the SCLK signal at the
P10 latch with the address enable signal. Note that performing the address latch function in the FF and clocking the
data into the PIO FF is also valid for Case 1 and Case 2. This allows trade-offs of I/O performance of these two
functions.

use ORCA3.orcacomp.all;

entity demux1 is
port ( clk: in std_logic;
adin: in std_logic_vector(7 DOWNTO 0);
-- outputs listed here
)i

end demuxl;

architecture Structure of demux1 is
-- internal signal declarations
signal drhi, drlo : std_logic;
signal abus, dbus : std_logic_vector(7 DOWNTO 0);

-- local component declarations
COMPONENT ifslsld -- PIC input latch
PORT( d :IN std_logic := "X
sclk: IN std_logic := "X
cd :IN std_logic :='X";
g :OUT std_logic :='XY);
END COMPONENT;

COMPONENT fd1p3dx -- PLC flip-flop
PORT( d : IN std_logic :='X;

sp: IN std_logic :='X;

ck: IN std_logic :='X";

cd: IN std_logic :='X";

g : OUT std_logic :='X";

gn: OUT std_logic :='X");
END COMPONENT;

COMPONENT vhi

PORT( z: OUT std_logic := 'X");
END COMPONENT;
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COMPONENT vlo
PORT( z: OUT std_logic :='X');
END COMPONENT;
begin
-- component instantiation statements
drive_hi: vhi port map (drhi);
drive_lo: vlo port map (drlo);

gl:foriin Oto 7 generate
pio_latch: ifsls1d port map (adin(i), clk, drlo, abus(i));

plc_reg: fd1p3dx port map (adin(i), drhi, clk, drlo, dbus(i)); -- gn output not specified
end generate;
end Structure;

Case 3: Output Multiplexing

To multiplex separate buses into a single address/data output bus, use the OSMUX21 or OEMUX21 element and
route the address bit to OUT1 and the data bit to OUT2. Depending on what phasing you want between address
and data, you can use the PIO output FF to delay the address or data by another ECLK or SCLK cycle. This puts
the PIO in OUT1OUTREG mode or OUT20UTREG mode. This is shown in Figure 5.

PLC I PIC

|
ADDRESS } OUT1

FROM
ROUTING

CLK

P/O
LOGIC PAD

DATA
FROM
ROUTING

ADDR ADDRlX ADDR2 X ADDR3 X ADDR4 X ADDRS

DATA ><><><>< DATAL1 X DATA2 X DATA3 X DATA4
REG ADDRESS ><><><X ADDR1 X ADDR2 X ADDR3 X ADDR4
PAD ><><><><ADDR1><DATAlXADDRZXDATAZXADDR3><DATA3><ADDR4><

Figure 4. PIC Output Multiplexing

ouT2

5-5797(F)
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Here is a VHDL example of how to instantiate such a circuit:

-- VHDL netlist for testing 3C/3T PIC architecture
-- Output Multiplexer, OUT20UTREG mode

library IEEE, ORCAS;
use IEEE.std_logic_1164.all;
use ORCAS3.orcacomp.all;

entity omux1 is
port ( clk: in std_logic;
adout: out std_logic_vector(7 DOWNTO 0);
-- other inputs and outputs listed here
)

end omux1;

architecture Structure of omux1 is
-- internal signal declarations
signal drhi  : std_logic;
signal drlo  : std_logic;
signal abus :std_logic_vector(7 DOWNTO 0);
signal rabus : std_logic_vector(7 DOWNTO 0);
signal dbus :std_logic_vector(7 DOWNTO 0);
-- local component declarations
COMPONENT vhi
PORT( z: OUT std_logic :='X");
END COMPONENT;

COMPONENT vio
PORT( z: OUT std_logic :
END COMPONENT;

X

COMPONENT osmux21 -- PIC output Mux
PORT( dO:IN std_logic := "X
d1: IN std_logic := "X’
sclk: IN std_logic :='X};
z : OUT std_logic :='X');
END COMPONENT;

COMPONENT ofs1p3dx -- PIC output FF
PORT( d:IN std_logic := 'X";

sp: IN std_logic :='X";

sclk: IN std_logic :="'X";

cd: IN std_logic := "X’

g : OUT std_logic :='X");
END COMPONENT;

begin

-- component instantiation statements
drive_hi: vhi port map (drhi);
drive_lo: vlo port map (drlo);

gl:foriin O to 7 generate
pio_oreg: ofs1p3dx port map (abus(i), drhi, clk, drlo, rabus(i));
pio_mux: osmux21 port map (rabus(i),dbus(i),clk,adout(i));
end generate;
end Structure;
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Fast Address Decode Using SLICs Next to PICs

An address input from an external bus can also be decoded very quickly using the SLICs in the PLCs adjacent to
the PICs. The decode bit(s) could then be used to select various internal registers for reads or writes. Using the
input demultiplexer example above (CASE 1), the address latch outputs from the P1Os could be routed to a nearby
SLIC for decoding, and the decode bit(s) could drive the clock enable of the PLC data register to be written to, as
seen in Figure 4.

OTHER ADDRESS
LINES
PIO I PLC
IN1' DEC
PAD D Q = SLIC
|
|
CLK :
SCLK |
IN2, b o
: L1 EN
T

PIC INPUT :XDATAlXADDRlX DATAZXADDRZX DATA3XADDR3X DATA4XADDR4X

PIC LATCH
OUTPUT ADDRO X ADDR1 X ADDR2 X ADDR3 X ADDR4

PLC FF
ouTPUT  DATAO X DATAL X DATA2 X DATA3 X DATA4

5-5798(F)

Figure 5. PIO Input Demultiplexing

To instantiate such a circuit using VHDL.:

library IEEE, ORCA3;
use IEEE.std_logic_1164.all;
use ORCA3.orcacomp.all;

entity demux2 is
port ( clk: in std_logic;
adin: in std_logic_vector(7 DOWNTO 0);
-- outputs listed here

end demux2;
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architecture Structure of demux2 is
-- internal signal declarations
signal drhi, drlo : std_logic;
signal abus, dbus : std_logic_vector(7 DOWNTO 0);
signal csel :std_logic;

-- local component declarations
Zero Hold and Programmable Delay Input

The designer can use the zero-hold flip-flop mode or the programmable delay input capabilities of the P10 to imple-
ment a zero hold input capture. The zero-hold flip-flop mode requires the combined use of both the SCLK and
ECLK to drive the PIO flip-flop’s clock pin and the latch clock, respectively.

LATCH FF
DATA OUT
INPUT DATA D Q D QI TOPIC ROUTING
EXPRESSCLK CE
’, SIR
SYSTEM CLK

CLOCK ENABLE

LOCAL SET/RESET

EXPRESSCLK \_/_\_/_\_/_\_/
SYSTEM CLK _/_\_/_\_/_\_/_\
INPUTDATA A X B X c X D X E
QLATCH A X B X C X D ><E
QFF X A X B X C X D

5-5974(F)

Figure 6. Fast Capture (Zero-Hold FF)

29 Lattice Semiconductor



Application Note ORCA Series 3 FPGAs Programmable 1/0 Cell (PIC):
January 2002 Logic, Clocking, Routing, and External Device Interface

Methods to Assign Special Properties to PIC Resources (continued)

To instantiate this zero-hold circuit in Verilog:

/I Verilog design for testing 3C/3T PIC: Zero Hold
module NOHOLD (SCLK,ECKR,DATAI,DATAO);

input SCLK,ECKR,DATAI;

output DATAO;

wire DRHI, DRLO, ECKR_INT, DATAL_INT;

/I instantiate components

VHI VH1 (DRHI);

VLO VL1 (DRLO);

CLKCNTLR CL1 (ECKR, DRLO, ECKR_INT);

IBMS 1B1 (DATAI,DATAL_INT);

ILF2P3DX ILF1 (DATAI_INT, DRHI, ECKR_INT, SCLK, DRLO, DATAO);
endmodule

The ECLK pad location must be assigned in the preference file. There is one ECLK pin at the center of each side of
the array, with a secondary ECLK pin available in the lower-left and upper-right corners. Also, clock enable and
reset have been defaulted to simplify the example.

If an ECLK is not used for the clock, then a programmable delay input needs to be used with the PIO input FF,
These are used by instantiating an input buffer whose name ends with an "s", such as IBMs. There are no clock
restrictions with using this type of /O buffer to obtain a zero hold, but the setup time to the FF will be slightly
degraded vs. using a zero-hold flip-flop.

High-Speed 3-State Enable/Disable FF

In the Series 3 architechture, an extra FF in every PIO is available to register the 3-state enable/disable signal, thus
allowing very fast bus turn around times.

High-Speed Clock-To-Output (Tco)

It has been noted already that by using a PIC register with an Express clock and a fast output buffer, extremely fast
synchronous outputs can be generated. For example, in a OR3T80-7, the expected clock-to-output delay from an
ECLK middle input pin to the PIC output pin (fast buffer, same side as ECLK, 50 pF load) is 4.5 ns (see data book,
Timing Characteristics). Subsequent speed grades (-8, etc.) will naturally be faster. If external clock skew is mini-
mized and external devices with fast setup times are used, this registered output can enable system speeds of
+100 MHz.

CAUTION: If this output approach is used with wide buses, care must be taken to minimize ground bounce.
Fast Open-Drain Output—Shared Interrupt Line

The PIO output buffers can easily be configured for open-drain outputs, for applications such as a wired-OR inter-
rupt signal to a microprocessor. The input signal to the 3-statable buffer can be directly tied to the buffer's 3-state
control signal. Therefore, if the signal at the input to the buffer is a logical 0, the output is low, but if the input is a
logical 1, the output is forced to high impedance. This open drain can easily be implemented in the source code
and inferred by a synthesis tool as follows:

-- VHDL netlist for testing 3C/3T PIC architecture
-- Open drain output, inferred

library |IEEE;
use IEEE.std_logic_1164.all;

entity odrain is
port (din: in std_logic;
doutl: out std_logic;
dout2: out std_logic);
end odrain;

Lattice Semiconductor 30



ORCA Series 3 FPGAs Programmable 1/0 Cell (PIC): Application Note
Logic, Clocking, Routing, and External Device Interface January 2002

Methods to Assign Special Properties to PIC Resources (continued)

architecture Behavioral of odrain is

signal mid : std_logic;
begin

mid <=din;
doutl <="'0"when (mid ="'0") else 'Z';

dout2 <= mid when (mid ='0") else 'Z';
end Behavioral;
In this example, dout2 will implement the fast open-drain output correctly, routing the mid signal through the PIC’s
OUT1 or OUT2 data path to the 3-state buffer’s input and control pin in parallel. Dout1 will accomplish a similar
function, but is not a true fast open-drain output. Doutl will tie a VLO library element’s output through OUT1 or
OUT?2 to the 3-state buffer’s input and connect mid to the buffer’s control pin via a separate route. Therefore, use
the dout2 method.

An open-drain can also be instantiated using any of the OBZxxx output buffers. For example:

-- VHDL netlist for testing 3C/3T PIC architecture
-- Open drain output, instantiated

library IEEE;
use IEEE.std_logic_1164.all;

entity odrain2 is
port (din: in std_logic;
dout: out std_logic);
end odrain2;

architecture Structural of odrain2 is
component ibm
port(i: IN std_logic := "X
0: OUT std_logic);
end component;

component obz6
port( i: IN std_logic := 'X";
t: IN std_logic :='X";
0: OUT std_logic);
end component;
signal mid : std_logic;
begin
ibuf: ibm port map (din,mid);
obuf: 0bz6 port map (mid,mid,dout);
end Structural;

Output Logic (AND, NAND, etc.—OUT2 with ECLK or SCLK

The logic block inside each PIO allows the designer the ability to combine signals at the I/O to increase the speed
of signals being sent off-chip. Either SCLK or ECLK can be gated with the OUT2 signal. Logic functions include
AND, NAND, OR, NOR, XOR, and XNOR. Two examples of this are an address decode, where two signals are
gated through an AND gate, and Parity generation where two signals are gated through an XOR gate. One of the
two signals in these examples would come from one side of the AND/XOR tree and would connect to the OUT2 pin
(available for each P10), while the other signal would come from the other side of the AND/XOR tree and would
connect to either the SCLK pin (available for each PIC) or the ECLK pin (available for each side of the device). This
circuit could also be used to generate short external pulses through gated clocks.

Since this is an asynchronous circuit, great care must be taken to control the timing between signals to avoid
unwanted glitches (see Note below). For example, the designer may want an internal flip-flop’s output to be ANDed
with its own SCLK and then drive this gated clock directly out to some external device.
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To instantiate this PIO logic (AND function) in VHDL:

-- VHDL netlist for testing 3C/3T PIC architecture
-- PIO logic

library |IEEE;
use IEEE.std_logic_1164.all;

entity piolog is
port (inl: in std_logic;
in2: in std_logic;
and-out: out std_logic);
end piolog;

architecture mixed of piolog is
component osand2
port(a: IN std_logic :='X";
sclk: IN std_logic := "X’
z: OUT std_logic :='X");
end component;

begin
gate: osand2 port map (inl,in2,and-out);

end mixed;

Synthesis tools do not infer PIO logic at this time.

Note: Gated clocks should be a last resort. It is a much better design practice to use nongated clocks and drive a
clock enable pin to control data flow whenever possible. The same signal which drives the SCLK or ECLK
pad of the FPGA should drive the external device’s clock pin, and a synchronous signal from PIC output reg-
ister should drive the external device’s clock enable. This maintains a fully synchronous design which will be
easier to debug and less prone to clock glitches.

Conclusion

The ORCA Series 3 PIC’s numerous logic and routing features make it a flexible, high-speed interface between the
external system and the Series 3's core logic array. The PICs are an integral part of the Series 3 architecture which
allow these FPGAs to operate in a variety of modern high-speed digital applications.
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