

Application Note
January 2002

ORCA

®

Series 3 FPGAs Programmable I/O Cell (PIC):
Logic, Clocking, Routing, and External Device Interface

Abstract

This application note describes the features and
advantages of the ORCA Series 3 FPGA program-
mable I/O cell (PIC). The Series 3 PIC architecture is
presented in detail. Methods for efficiently imple-
menting designs using the PIC architecture’s
resources are presented, using both synthesis tool
inferencing and source code instantiation. Several
novel applications which utilize some of the PIC’s
special features are presented, as well as methods
for implementing them.

Introduction

Modern digital electronic systems are being asked to
perform increasingly difficult tasks at greater speed,
with lower power, and in less space. Today’s systems
frequently utilize one or several high-speed micropro-
cessors, high-speed memory, and fast bus architec-
tures in order to squeeze the maximum system
speed out of the smallest area. These devices are
also migrating to lower voltages due to ever decreas-
ing device geometry and power consumption limita-
tions. Also, due to shrinking design times and system
flexibility needs, more designers are turning to pro-
grammable logic solutions. The latest crop of PLDs
and FPGAs have huge numbers of internal gates,
registers, and routing resources, all of which can
operate at extremely high core speeds. To take full
advantage of these internal capabilities in a high-
speed digital system, the design of the device’s inter-
face to the external system (I/O) must take all of the
internal and external requirements into account and
allow for very high-speed data transfers into and out
of the device.

The ORCA Series 3 FPGA family incorporates a new
programmable I/O cell (PIC) which takes all of these
requirements into account. It has been designed to
allow for very high system speeds. It can interface to
external devices with several different voltage levels.
It has selectable power management and system
noise management features, and several special
built-in logic functions to directly interface to external
buses.

PIC Features and Benefits

The Series 3 PIC architecture has numerous features
which can be very beneficial to the designer. Gener-
ally speaking, the Series 3 PIC allows for a higher
frequency system interface than many other FPGAs
due to its register/latch and zero-hold capabilities. It
allows for greater flexibility in the electrical character-
istics of the I/O signals. It can save on logic, regis-
ters/latches, and routing resources that would
otherwise be implemented in internal logic. It can
save power by allowing a lower-voltage core to inter-
face to a higher-voltage system (such as a 3.3 V core
in a 5 V system). It can also save power and reduce
noise/ground bounce by using different output driver
modes. Due to routing resources, it could save the
designer time and effort by allowing pins to be locked
much earlier in the design cycle. Finally, the PIC can
save cost by potentially allowing the design to fit into
a smaller array than would otherwise have been pos-
sible. Some of the PIC’s specific features and their
corresponding benefits can be seen in the following
tables.

Table of Contents

Contents Page Contents Page

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA

 Series 3 FPGAs Programmable I/O Cell (PIC):

2 Lattice Semiconductor

Abstract ...1
Introduction..1
PIC Features and Benefits ..1
PIC Architecture Description4
Overview ...4
Programmable Input/Output (PIO)4
PIO Inputs ...5
PIO Outputs ..5
PIC Routing Resources ..6
PIC Clocking ...7
PIC Set/Reset ...8
Design Implementation..9
PIC Library Cells ...11
I/O Cell and PIC Cell Instantiation in VHDL...............16
I/O Cell and PIC Cell Instantiation in Verilog18
Express Clock Instantiation in VHDL and Verilog19
Methods to Assign Special Properties to
PIC Resources ..21
Methods to LOC I/O Pins ..21
Methods to Specify PIC Timing Constraints:

Input Setup (to a PIC Input Register)22
Methods to Specify PIC Timing Constraints:

Clock to Output (from a PIC Output Register)22
Methods to Specify PIC Timing Constraints:

Frequency/Period (from/to a PIC register)22
Methods to Specify PIC Timing Constraints:

Multicycle (from/to a PIC Register)23
Applications ..24
Conclusion...32

List of Tables

Table 1. Input Features and Benefits 3
Table 2. Output Features and Benefits 3
Table 3. Control Signal Features and Benefits 3
Table 4. Grouping and Routing Features 3
Table 5. Input Buffer Cells 11
Table 6. Output Buffer Cells 12
Table 7. Bidirectional Buffer Cells 12
Table 8. Bidirectional Buffer with Delayed

Input Cells ... 13
Table 9. PIC Cells for Use with Series 3 13
Table 10. PIC Multiplexer Cells 14
Table 11. PIC Input Flip-Flop Cells 14
Table 12. PIC Output Flip-Flop Cells 14
Table 13. PIC Input Latched Flip-Flop Cells 15
Table 14. PIC Input Latch Cells 15

List of Figures

Figure 1. OR3Txx/OR3LxxxB 4
Figure 2. Series 3 PIC in EPIC 7
Figure 3. Clock Routing ... 8
Figure 4. PIC Output Multiplexing 26
Figure 5. PIO Input Demultiplexing 28
Figure 6. Fast Capture (Zero-Hold FF) 29

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA

 Series 3 FPGAs Programmable I/O Cell (PIC):

Lattice Semiconductor 3

PIC Features and Benefits (continued)

Table 1. Input Features and Benefits

Table 2. Output Features and Benefits

Table 3. Control Signal Features and Benefits

Table 4. Grouping and Routing Features

Input Features Benefits

TTL or CMOS compatible input levels Flexibility to interface to different external devices.
5 V tolerant OR3Txx/OR3LxxxB Flexibility to operate in mixed voltage environments.
Programmable delay Ability to create fast zero-hold inputs.
100 kΩ pull-up/50 kΩ pull-down Inputs can be defaulted without external resistors.
Input registered modes (latch, FF, LFF,
direct in)

Fast registered/latched inputs and/or zero-hold inputs without using
PLC resources.

Normal/inverted clock Fast, flexible input clocking without using PLC resources.
Two inputs (IN1, IN2) per I/O pin Flexibility to deMUX inputs, bring both signals into the device.
Clock input per I/O pin Allows any input to drive an internal tree routing structure for use as

clocks on other high fan-out signal.

Output Features Benefits

Two outputs (OUT1, OUT2) from array per
I/O pin

Flexibility to MUX outputs.

Selectable drive current Fast outputs or low-power outputs.
Normal or fast open drain Fast-shared-interrupt outputs.
Fast, slewlim, sinklim buffers Fast outputs or low-power, low EMI outputs.
100 kΩ pull-up/50 kΩ pull-down Outputs can be defaulted without external resistors.
Output from PIO FF or general routing Optional fast registered outputs without using PLC FFs.
Registered 3-state signal Fast-output enable without using PLC resources.
ECLK or SCLK FF resources Fast, flexible output clocking without using PLC.
Normal/inverted clock resources Fast, flexible output clocking without using PLC.
Output logic Gated clock outputs, pulses, decodes, etc.
Output MUXes Flexibility to MUX outputs.

Control Signal Features Benefits

CE—active-high or -low, or always on Allows for fast, flexible control of registered I/O without using PLC.
LSR—active-high or -low Allows for fast, flexible set/reset of registered I/O without using PLC.
LSR—asynchronous or synchronous Allows for fast, flexible set/reset of registered I/O without using PLC.
LSR—ce_over_lsr, lsr_over_ce (sync) Allows for fast, flexible set/reset of registered I/O without using PLC.
GSR—enable/disable Allows for fast, flexible set/reset of registered I/O without using PLC.

Grouping and Routing Features Benefits

Four PIO per PIC, two PICs per pair Easier to create nibble and byte-wide oriented I/O buses.
Routing structure similar to PLC Flexible routing allows pin locking of device prior to place and route.

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA

 Series 3 FPGAs Programmable I/O Cell (PIC):

4 Lattice Semiconductor

PIC Architecture Description

Overview

The ORCA Series 3 PICs are located around the perimeter of the FPGA device (top, bottom, left, and right edges).
An ORCA Series 3 PIC interfaces to four bond pads and contains the necessary routing resources to provide an
interface between I/O pads and the PLCs. Each PIC is composed of four programmable I/Os (PIOs) and significant
routing resources to adjacent PICs and PLCs, as well as to the routing resources of the entire device. PICs are
grouped in pairs for purposes of routing. This allows the PIC’s architecture to handle nibble and byte wide buses
very efficiently. Each PIO contains input buffers, output buffers (3-statable), routing resources, latches/FFs, and
logic and can be configured as an input, output, or bidirectional I/O. Each PIO can be configured for TTL or CMOS
level input mode. Each PIO can automatically accept 3.3 V or 5 V referenced levels. Each PIO output can be
adjusted for speed and current drive capability.

Programmable Input/Output (PIO)

Figure 1 shows a Series 3 PIO. Each PIO within a PIC can be logically divided into two blocks: input logic and out-
put logic. These two blocks share some common resources, namely the I/O pad of the device, pull-up/pull-down
resistors, a system clock, an Express clock, controls for clock enable, local set/reset, and global set/reset. If the
pad is designed as bidirectional I/O, then both blocks (input and output) of the PIO will be used. Also, note that if
the I/O pad is used only as an output, the input block remains active and its resources, such as pull-ups and pull-
downs, can be used.

5-5805(F)

Figure 1. OR3Txx/OR3LxxxB

IN2

IN1
D0
D1

CK
SP
SD
LSRINREGMODE

LATCHFF
LATCH
FF

D
CKNORMAL

INVERTED

RESET
SET

LEVEL MODE

TTL
CMOS

UP
DOWN
NONE

PULL-MODE

BUFFER

TS

FAST
SLEW
SINK

RESET
SET

LSR
SP
CK
D

OUT1

OUT2

ECLK

SCLK

CE

CE_OVER_LSR
LSR_OVER_CE
ASYNC

LSR

ENABLE_GSR
DISABLE_GSR

OUT1OUTREG
OUT2OUTREG
OUT1OUT2

NOR
XOR
XNOR

AND
NAND
OR

PIO LOGIC

CLKIN

0

0

1

0

PAD Q

Q
1

PD

T
O

 R
O

U
T

IN
GQ

1

ECLK
SCLK

PMUX

F
R

O
M

 R
O

U
T

IN
G

MODE

LSR

CK

D0 Q

OUTPUT BLOCK INPUT BLOCK

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA

 Series 3 FPGAs Programmable I/O Cell (PIC):

Lattice Semiconductor 5

PIC Architecture Description (continued)

PIO Inputs

Each PIO input has six major options associated with it. These options are automatically selected when the corre-
sponding library elements are inferred or instantiated. They can also be manually selected in the EPIC editor.
These options are as follows:

■ 3Cxxx input level: TTL or CMOS

■ 3Txx input level: 5 V tolerant (5 V PCI compliant) or 3 V PCI compliant (clamped)

■ 3LxxxB input level: 5 V tolerant (5 V PCI compliant) or 3 V PCI compliant (clamped)

■ Input speed: fast or delayed

■ Float value: pull-up (100 kΩ), pull-down (50 kΩ), none

■ Input register mode: latch, FF, fast zero-hold FF, none (direct input)

■ Input register/latch clock sense: inverted or noninverted

■ Input selection: IN1, IN2, and/or clock input

PIO Outputs

Each PIO output has 10 major options associated with it. These options are automatically selected when the corre-
sponding library elements are inferred or instantiated. They can also be manually selected in the EPIC editor.
These options are as follows:

■ Output drive current: 12 mA sink/6 mA source or 6 mA sink/3 mA source

■ Output function: normal or fast open-drain

■ Output speed: fast, slewlim, sinklim

■ Output source: FF direct out, general routing

■ 3-state source: FF direct out, general routing

■ Output polarity: active-high or -low

■ 3-state polarity: active-high or -low

■ Output FF clock source: express, system

■ Output register clock sense: inverted or noninverted

■ Logic options: MUX options: OUT1/OUT2, OUT1/OUTREG or OUT2/OUTREG; logic options: AND, NAND, OR,
NOR, XOR, and XNOR (between OUT1/OUT2)

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA

 Series 3 FPGAs Programmable I/O Cell (PIC):

6 Lattice Semiconductor

PIC Architecture Description (continued)

PIC Routing Resources

Each PIC provides routing resources between the four PIOs, adjacent PICs, adjacent PLCs, and to the rest of the
PICs and PLCs in the device. These resources include the following:

■ PIC pairs and adjacent PLCs

■ Output switching block: one per PIC, connects PIO outputs and controls to PIC routing resources

■ Clock spine switch block: one per PIC pair, connects PIC clock resources to global clock spines

■ pSW: two groups of eight lines per PIC, connecting to PIOs in groups of four

■ px1: five lines per PIC, traverse one PIC, broken by a CIP in middle of PIC

■ px2: five lines per PIC, traverse 2 PICs

■ px5: 10 lines per PIC, traverse 5 PICs

■ pxH: eight lines per PIC, traverse half of a side of the array

■ pxL: 10 lines per PIC, traverse entire side of the array

■ Routing buffers

Figure 2 shows the left PIC of a top edge PIC pair and part of the right PIC. Along the bottom of the image is a por-
tion of a PLC.

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA

 Series 3 FPGAs Programmable I/O Cell (PIC):

Lattice Semiconductor 7

PIC Architecture Description (continued)

Figure 2. Series 3 PIC in EPIC

PIC Clocking

All four PIO within a PIC share a common local system clock (SCLK), while all PICs on a given side of the device
share a common express clock (ECLK). These clocks can be used to control the PIO input register/latch, input
latch, output register, output logic, and output MUX. All four PIO within a PIC also share a common clock enable,
which can control the input register/latch and output register of each PIO. Both the clock and the clock enable can
be configured for active-high or active-low operation. The common system clock for a PIC can originate from the
system clock spine or from one of the local pSW routing segments.

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA

 Series 3 FPGAs Programmable I/O Cell (PIC):

8 Lattice Semiconductor

PIC Architecture Description (continued)

Also, the direct CLKIN inputs from each PIO in the PIC pair (eight PIOs) and the local pSW segments are routed to
the system clock spine switching block, whose output drives the clock spines. This allows any I/O pin or internal
logic to drive the internal clock network allowing up to 40 global clocks per device. The common ECLK for a device
side originates from the CLKCNTRLx function block which resides in the middle of the side of the FPGA on which
the PIC itself resides. This CLKCNTRLx function block is driven by the dedicated ECLK input pad on that side of
the FPGA or from the secondary ECLK pins in the lower-left and upper-right corners. These pin restrictions must
be followed for the ECLK pins, but they do yield improved system performance, especially for I/O setup times and
clock-to-out times. The overall Series 3 clock routing diagram for ECLK and system clock are shown in Figure 3.
This express clock delivers the fastest clock to output delays from a registered output.

PIC Set/Reset

All four PIOs within a PIC share a common local set/reset. This signal can be synchronous or asynchronous. If syn-
chronous, it can be set for CE_OVER_LSR or LSR_OVER_CE operation. The LSR can be configured for active-
high operation or active-low operation. Global set/reset can also be disabled.

5-5806(F)

Figure 3. Clock Routing

EXPRESSCLKS TO PIOs

FAST CLOCKS

EXPRESSCLK PADS
CLKCNTRL

BLOCK

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA

 Series 3 FPGAs Programmable I/O Cell (PIC):

Lattice Semiconductor 9

Design Implementation
To use the Series 3 PIC’s features in an HDL design, you must determine whether the synthesis tools are inferring
the desired PIC resources from the generic HDL source code, and whether these PIC resources are being con-
nected to internal resources correctly. This can be done by viewing the synthesis output netlist, which for the
ORCA Foundry tool flow must be an EDIF file. You can view this EDIF file with any text editor. The EDIF file should
contain PIC library cell declarations and instantiations with names identical to those listed in the Series 3 macro
library (see cell tables below). Below is an EDIF netlist which uses several Series 3 PIC cells. The actual design is
not important, but notice the cell declarations in the top portion of the EDIF file and the instances in the lower por-
tion.
(edif pictest

:
 (cell IFS1P3DX (cellType GENERIC) ⇐⇐⇐⇐ PIC INPUT FLIP-FLOP

CELL PORTS HERE
CELL PROPERTIES HERE

 (cell OFS1P3DX (cellType GENERIC) ⇐⇐⇐⇐ PIC OUTPUT FLIP-FLOP
CELL PORTS HERE
CELL PROPERTIES HERE

 (cell OB12F (cellType GENERIC) ⇐⇐⇐⇐ FAST 7OUTPUT BUFFER
CELL PORTS HERE
CELL PROPERTIES HERE

(cell OSMUX21 (cellType GENERIC) ⇐⇐⇐⇐ PIC OUTPUT MUX
CELL PORTS HERE
CELL PROPERTIES HERE

(cell ILF2P3DX (cellType GENERIC) ⇐⇐⇐⇐ PIC INPUT LATCHED FLIP-FLOP
CELL PORTS HERE
CELL PROPERTIES HERE

(cell IBM (cellType GENERIC) ⇐⇐⇐⇐ INPUT BUFFER
CELL PORTS HERE
CELL PROPERTIES HERE

OTHER CELLS DECLARED HERE
 (library work
 (edifLevel 0)
 (technology (numberDefinition))
 (cell pictest (cellType GENERIC)
 (view structure (viewType NETLIST)
 (interface
 (port clk (direction INPUT))
 (port eckr (direction INPUT)
 (property loc (string "131"))) ⇐⇐⇐⇐ ECKR PAD LOCATION
 (port ckena (direction INPUT))

OTHER PORTS HERE
SYNTHESIS DESIGN PROPERTIES HERE INSTANTIATIONS

(contents ⇓⇓⇓⇓
 (instance right_xclk (viewRef NETLIST (cellRef CLKCNTLR (libraryRef orca3c))))
 (instance ireg_ckena (viewRef NETLIST (cellRef IFS1P3DX (libraryRef orca3c))))
 (instance g1_0_oreg_dout_a (viewRef NETLIST (cellRef OFS1P3DX (libraryRef orca3c))))
 (instance g1_0_out_buf (viewRef NETLIST (cellRef OB12F (libraryRef orca3c))))
 (instance g1_0_adlatch (viewRef NETLIST (cellRef IFS1S1D (libraryRef orca3c))))
 (instance g1_0_out_mux (viewRef NETLIST (cellRef OSMUX21 (libraryRef orca3c))))
 (instance addr_dec (viewRef NETLIST (cellRef SAND8 (libraryRef orca3c))))
 (instance ireg_din_b (viewRef NETLIST (cellRef ILF2P3DX (libraryRef orca3c))))
 (instance ix201 (viewRef NETLIST (cellRef GSR (libraryRef orca3c))))
 (instance ix205 (viewRef NETLIST (cellRef OB6 (libraryRef orca3c))))
 (instance ix222 (viewRef NETLIST (cellRef IBM (libraryRef orca3c))))

OTHER CELLS INSTANTIATED HERE
NETS DECLARED HERE

 (design pictest (cellRef pictest (libraryRef work))))

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA

 Series 3 FPGAs Programmable I/O Cell (PIC):

1010 Lattice Semiconductor

Design Implementation (continued)

If you do not wish to view the EDIF file in a text editor,
you may have another option. Most synthesis vendors’
tools support a schematic viewer. This viewer reads in
your EDIF netlist and displays the design in schematic
form, including cell references. For example, in Exem-
plar’s Galileo Extreme* you can invoke a tool named
Netscope, which will display the entire netlist in sche-
matic form. It even has an option to invoke a text editor
to view the ASCII text version of the netlist simulta-
neously. With it you can highlight a symbol in the sche-
matic viewer, and it will automatically highlight the
cross-referenced instantiation in the EDIF file.

Some synthesis vendors’ tools might not infer these
elements. If the synthesis tools are not correctly infer-
ring the desired PIC resources (or not at all), then the
designer must resort to instantiating most (or all) of the
PIC resources directly into the source code.

Many of the newest synthesis tool releases do infer at
least some PIC resources. For example, Exemplar’s
Leonardo Spectrum* tool will infer PIC registers from
generic VHDL source code. However, depending on
how the source code is written, there may be concerns
as to how those PIC registers connect to internal logic.
For example, if the source code defines some regis-
tered complex logic function, and that register output is
declared as an output pad, Leonardo Spectrum will
most likely place the register in a PIC cell. However, the
complex logic will be implemented inside PFU
resources in the core. There may be significant routing
delays to get from the PFU output to the PIC register
input.

You may also need the registered output to feed back
to other internal logic. It could be possible to rewrite the
source code to force synthesis to place the logic and
register together in a PFU, but then the register output
must route to a nonregistered I/O. Or you could leave
the register in the PIC, declare the pad as an in/out
bidirectional pad and use the input register in the same
PIO to bring the signal back into the device.

This trade-off between internal registering and PIC reg-
istering can be eliminated by double-registering syn-
chronous signals destined for output. Thus, the
complex logic has a short route inside a PFU to be reg-
istered, and this register can feed other internal logic
as well as the PIC register which drives the fast output.
No in/out pad is required (unless the signal is sup-
posed to be a bidirectional bus already). The VHDL
code below illustrates some of these concepts.

* Galileo Extreme and Leonardo Spectrum are trademarks of Exem-
plar Logic, Inc.

-- VHDL netlist for testing 3C/3T PIC architecture
-- Specifically with Spectrum tool inferring PIC cells
library IEEE;
use IEEE.std_logic_1164.all;

entity spectrum_test is
 port (clk, resetn: in std_logic;

ain, bin, cin: in std_logic;
aout, bout, cout, dout: out std_logic;
eio: inout std_logic;

 tri: in std_logic;
fout: out std_logic);

end spectrum_test;

architecture Behavioral of spectrum_test is
signal reg_a, reg_b, reg_c: std_logic;
signal reg_d, reg_e, reg_f: std_logic;

begin
synch: process (clk, resetn)
begin

if (resetn = '0') then
 reg_a <= '0'; reg_b <= '0'; reg_c <= '0';
 reg_d <= '0'; reg_e <= '0'; reg_f <= '0';
 aout <= '0'; bout <= '0'; cout <= '0';
 dout <= '0'; fout <= '0';
elsif (clk'EVENT and clk = '1') then
 reg_a <= ain;
 aout <= reg_a;
 reg_b <= bin;
 bout <= reg_b;
 reg_c <= cin;

 if (reg_a = '1' and reg_b = '1' and reg_c = '1') then cout
<= '1';

 else cout <= '0';
 end if;

 if (reg_a = '1' and reg_b = '0' and reg_c = '0') then reg_d
<= '1';

 else reg_d <= '0';
 end if;
 dout <= reg_d;

 if (reg_a = '0' and reg_b = '1' and reg_c = '1') then reg_e
<= '0';

 else reg_e <= '1';
 end if;

 reg_f <= eio;
 fout <= reg_f;
end if;

end process synch;
eio <= reg_e when tri = '1' else 'Z';

end Behavioral;

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA

 Series 3 FPGAs Programmable I/O Cell (PIC):

Lattice Semiconductor 11

Design Implementation (continued)

When this code is synthesized by Leonardo Spectrum,
the following is implemented:

1. reg_a, reg_b and reg_c are all input registers in
separate PIOs.

2. reg_a drives another register in a different PIO,
which drives the aout pad. reg_b drives another
register in a different PIO, which drives the bout
pad.

3. The combinatorial logic (LUT) which drives cout is
placed in a PFU. However, the register is placed in a
PIO, and this register drives the cout pad.

4. reg_d is a register inside a PFU, driven by combina-
torial logic (LUT) in the same PFU. reg_d then
drives a register in a separate PIO which drives the
dout pad.

5. eio is a bidirectional pad, driven by reg_e. reg_e is
an output register in the same PIO as the eio pad.
However, the combinatorial logic (LUT) which drives
reg_e is placed in a PFU. reg_f is an input register
in the same PIO as the eio pad. reg_f drives
another register in a different PIO. This register
drives the fout pad.

Notice that reg_d could fan out to many places inside
the array without adversely affecting douts clock-to-out-
put timing.

PIC Library Cells

There are numerous ORCA Series 3 macro library
cells that may be used to map to PIC resources such
as input buffers, output buffers, bidirectional buffers,
PIO gates, PIO multiplexers, PIO input flip-flops, PIO
output flip-flops, PIO input latches, and PIO input
latched flip-flops. Some of these library cells may not
be inferred by the synthesis tools, depending on which
version of synthesis tools are being used. Therefore, in
many cases, the user must instantiate these library
cells into his/her source code to achieve the desired
function. Shown below is a list of the available I/O and
PIO cells for Series 3, and a checklist of features:

I/O Cells for Use with Series 3

Table 5. Input Buffer Cells

Notes:
Pull-ups are 100 kΩ.

Pull-downs are 50 kΩ.

Delay is dependent on speed grade and array, but guarantees zero-
hold.

Cell TTL CMOS Pull-Up Pull-Down Delay

IBM — √ — — —
IBMS — √ — — √
IBMPD — √ — √ —
IBMPDS — √ — √ √
IBMPU — √ √ — —
IBMPUS — √ √ — √
IBT √ — — — —
IBTS √ — — — √
IBTPD √ — — √ —
IBTPDS √ — — √ √
IBTPU √ — √ — —
IBTPUS √ — √ — √

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
12 Lattice Semiconductor

Design Implementation (continued)

Table 6. Output Buffer Cells

Notes:
Sinklim is 6 mA sink and 3 mA source.

Slewlim is 12 mA sink and 6 mA source.

Fast is 12 mA sink and 6 mA source.

Pull-ups are 100 kΩ.

Pull-downs are 50 kΩ.

Table 7. Bidirectional Buffer Cells

Notes:
Sinklim is 6 mA sink and 3 mA source.

Slewlim is 12 mA sink and 6 mA source.

Fast is 12 mA sink and 6 mA source.

Pull-ups are 100 kΩ.

Pull-downs are 50 kΩ.

Cell Sinklim Slewlim Fast 3-State Pull-Up Pull-Down

OB6 √ — — — — —
OB12 — √ — — — —
OB12F — — √ — — —
OBZ6 √ — — √ — —
OBZ6PD √ — — √ √ —
OBZ6PU √ — — √ — √

OBZ12 — √ — √ — —
OBZ12PD — √ — √ √ —
OBZ12PU — √ — √ — √

OBZ12F — — √ √ — —
OBZ12FPD — — √ √ √ —
OBZ12FPU — — √ √ — √

Cell
CMOS
Input

TTL
Input

Sinklim Slewlim Fast 3-State Pull-Up Pull-Down

BMZ6 √ — √ — — √ — —
BMZ6PD √ — √ — — √ — √

BMZ6PU √ — √ — — √ √ —
BMZ12 √ — — √ — √ — —
BMZ12PD √ — — √ — √ — √

BMZ12PU √ — — √ — √ √ —
BMZ12F √ — — — √ √ — —
BMZ12FPD √ — — — √ √ — √

BMZ12FPU √ — — — √ √ √ —
BTZ6 — √ √ — — √ — —
BTZ6PD — √ √ — — √ — √

BTZ6PU — √ √ — — √ √ —
BTZ12 — √ — √ — √ — —
BTZ12PD — √ — √ — √ — √

BTZ12PU — √ — √ — √ √ —
BTZ12F — √ — — √ √ — —
BTZ12FPD — √ — — √ √ — √

BTZ12FPU — √ — — √ √ √ —

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
Lattice Semiconductor 13

Design Implementation (continued)

Table 8. Bidirectional Buffer with Delayed Input Cells

Notes:

Sinklim is 6 mA sink and 3 mA source.

Slewlim is 12 mA sink and 6 mA source.

Fast is 12 mA sink and 6 mA source.

Pull-ups are 100 kΩ.

Pull-downs are 50 kΩ.

Delay is dependent on speed grade, but guarantees zero-hold.

Table 9. PIC Cells for Use with Series 3

Cell
CMOS
Input

TTL
Input

Sinklim Slewlim Fast 3-State Pull-Up Pull-Down

BMS6 √ — √ — — √ — —
BMS6PD √ — √ — — √ — √
BMS6PU √ — √ — — √ √ —
BMS12 √ — — √ — √ — —
BMS12PD √ — — √ — √ — √
BMS12PU √ — — √ — √ √ —
BMS12F √ — — — √ √ — —
BMS12FPD √ — — — √ √ — √
BMS12FPU √ — — — √ √ √ —
BTS6 — √ √ — — √ — —
BTS6PD — √ √ — — √ — √
BTS6PU — √ √ — — √ √ —
BTS12 — √ — √ — √ — —
BTS12PD — √ — √ — √ — √
BTS12PU — √ — √ — √ √ —
BTS12F — √ — — √ √ — —
BTS12FPD — √ — — √ √ — √
BTS12FPU — √ — — √ √ √ —

Cell Type System Clock Express Clock

OEAND2 2 Input AND — √
OEND2 2 Input NAND — √
OENR2 2 Input NOR — √
OEOR2 2 Input OR — √

OEXNOR2 2 Input XNOR — √
OEXOR2 2 Input XOR — √
OSAND2 2 Input AND √ —
OSND2 2 Input NAND √ —
OSNR2 2 Input NOR √ —
OSOR2 2 Input OR √ —

OSXNOR2 2 Input XNOR √ —
OSXOR2 2 Input XOR √ —

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
Lattice Semiconductor 14

Design Implementation (continued)

Table 10. PIC Multiplexer Cells

Table 11. PIC Input Flip-Flop Cells

Notes:
All control signals are positive level.

Synch. Clear 1 is clear overrides enable. Synch. Clear 2 is enable over clear.

Synch. Preset 1 is preset overrides enable. Synch. Preset 2 is enable over preset.

Table 12. PIC Output Flip-Flop Cells

Notes:
All control signals are positive level.

Synch. Clear 1 is clear overrides enable. Synch. Clear 2 is enable over clear.

Synch. Preset 1 is preset overrides enable. Synch. Preset 2 is enable over preset.

Cell Type System Clock Express Clock

OEMUX21 2 to 1 MUX — √
OSMUX21 2 to 1 MUX √ —

Cell
System
Clock

(↑↑↑↑ Edge)

Clock
Enable

Asynch.
Preset

Asynch.
Clear

Synch.
Clear 1

Synch.
Clear 2

Synch.
Preset 1

Synch.
Preset 2

IFS1P3BX √ √ √ — — — — —
IFS1P3DX √ √ — √ — — — —
IFS1P3IX √ √ — — √ — — —
IFS1P3IZ √ √ — — — √ — —
IFS1P3JX √ √ — — — — √ —
IFS1P3JZ √ √ — — — — — √

Cell
Express

Clock
(↑↑↑↑ Edge)

System
Clock

(↑↑↑↑ Edge)

Clock
Enable

Asynch.
Preset

Asynch.
Clear

Synch.
Clear 1

Synch.
Clear 2

Synch.
Preset 1

Synch.
Preset 2

OFE1P3BX √ — √ √ — — — — —
OFE1P3DX √ — √ — ÷ — — — —
OFE1P3IX √ — √ — — ÷ — — —
OFE1P3IZ √ — √ — — — √ — —
OFE1P3JX √ — √ — — — — √ —
OFE1P3JZ √ — √ — — — — — √
OFS1P3BX — √ √ √ — — — — —
OFS1P3DX — √ √ — √ — — — —
OFS1P3IX — √ √ — — √ — — —
OFS1P3IZ — √ √ — — — √ — —
OFS1P3JX — √ √ — — — — √ —
OFS1P3JZ — √ √ — — — — — √

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
15 Lattice Semiconductor

Design Implementation (continued)

Table 13. PIC Input Latched Flip-Flop Cells

Notes:
All control signals are positive level except Express clock input.

Synch. Clear 1 is clear overrides enable. Synch. Clear 2 is enable over clear.

Synch. Preset 1 is preset overrides enable. Synch. Preset 2 is enable over preset.

Table 14. PIC Input Latch Cells

Note: All control signals are positive level.

Cell

System
Clocked
Flip-Flop
(↑↑↑↑ Edge)

System
Clock

Enable

Express
Clocked

Latch
(Negative

Level)

Asynch.
Preset

Asynch.
Clear

Synch.
Clear 1

Synch.
Clear 2

Synch.
Preset 1

Synch.
Preset 2

ILF2P3BX √ √ √ √ — — — — —
ILF2P3DX √ √ √ — √ — — — —
ILF2P3IX √ √ √ — — √ — — —
ILF2P3IZ √ √ √ — — — √ — —
ILF2P3JX √ √ √ — — — — √ —
ILF2P3JZ √ √ √ — — — — — √

Cell
System Clocked Latch

Enable
Asynch. Preset Asynch. Clear Synch. Clear Synch. Preset

IFS1S1B √ √ — — —
IFS1S1D √ — √ — —
IFS1S1I √ — — √ —
IFS1S1J √ — — — √

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
Lattice Semiconductor 16

I/O Cell and PIC Cell Instantiation in VHDL

If your synthesis tool will not infer the PIC resources you desire, you must instantiate them in your design.
In order to instantiate any component into a VHDL design, the component black box must first be declared in the
architecture. For example:

-- VHDL netlist for testing 3C/3T PIC architecture: Example 1
library IEEE;
use IEEE.std_logic_1164.all;

entity pic_example1 is
 port (clk, eckr : in std_logic;
 ckena, clear, tri : in std_logic;

 datai, datao : in std_logic);

attribute LOC : string;
attribute LOC of eckr : signal is "131"; -- 208 pin package

end pic_example1;

architecture Structure of pic_example1 is
 -- internal signal declarations
 signal drhi, drlo: std_logic;
 signal eckr_int : std_logic;
 signal datai_int : std_logic;
 signal rdata1, rdata2 : std_logic;
 signal datao_int : std_logic;
 -- local component declarations

COMPONENT vhi -- logic ‘1’ driver
PORT(z: OUT std_logic := 'X');
END COMPONENT;

COMPONENT vlo -- logic ‘0’ driver
PORT(z: OUT std_logic := 'X');
END COMPONENT;

COMPONENT clkcntlr -- clock controller, right edge
PORT(clkin : IN std_logic := 'X';

shutoff : IN std_logic := 'X';
clkout : OUT std_logic := 'X');

END COMPONENT;

COMPONENT ibmpus -- CMOS input buffer, pullup & delay
PORT(i: IN std_logic := 'X';

 o: OUT std_logic);
END COMPONENT;

COMPONENT ilf2p3dx -- PIC input latched FF
PORT(d : IN std_logic := 'X';

sp : IN std_logic := 'X';
 eclk: IN std_logic := 'X';
 sclk: IN std_logic := 'X';
 cd : IN std_logic := 'X';

q : OUT std_logic := 'X');
END COMPONENT;

COMPONENT fd1p3dx -- PLC flip-flop
PORT(d : IN std_logic := 'X';

sp: IN std_logic := 'X';
ck: IN std_logic := 'X';
cd: IN std_logic := 'X';
q : OUT std_logic := 'X';

Note: IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
17 Lattice Semiconductor

I/O Cell and PIC Cell Instantiation in VHDL (continued)

qn: OUT std_logic := 'X');
END COMPONENT;

COMPONENT ofs1p3dx -- PIC output FF, System clock
PORT(d : IN std_logic := 'X';
 sp: IN std_logic := 'X';
 sclk: IN std_logic := 'X';
 cd: IN std_logic := 'X';
 q : OUT std_logic := 'X');
END COMPONENT;

COMPONENT obz12fpd -- fast output buffer,3-state, pull-down
PORT(i: IN std_logic := 'X';
 t: IN std_logic := 'X';
 o: OUT std_logic);
END COMPONENT;

begin
:
end Structure;

Note a convenient source of PIC components (or any ORCA components for that matter) can be found in a VHDL
source library file called orcacomp.vhd. Entire component declarations can be copied from this file directly into the
design source code.

The component may then be instantiated as many times as desired in the design. For example, . . .

-- VHDL netlist for testing 3C/3T PIC architecture: Example 1
library IEEE;
use IEEE.std_logic_1164.all;

entity pic_example1 is
:
end pic_example1;

architecture Structure of pic_example1 is
 -- internal signal declarations
 -- local component declarations
begin
 -- component instantiation statements

drive_hi: vhi port map (drhi);
drive_lo: vlo port map (drlo);
right_xclk: clkcntlr port map (eckr, drlo, eckr_int);
in_buffer: ibmpus port map (datai,datai_int);
in_reg: ilf2p3dx port map(datai_int, ckena, eckr_int, clk, clear, rdata1);
pic_reg: fd1p3dx port map(rdata1, ckena, clk, clear, rdata2); -- qn not mapped
out_reg: ofs1p3dx port map(rdata2, ckena, clk, clear, datao_int);
out_buffer: obz12fpd port map(datao_int,tri,datao);

end Structure;

If the design is being synthesized, the Foundry mapper will see the black-box components and use the appropriate
library elements. However, for simulation, the components must be configured using the supplied simulation librar-
ies. Set up the simulator to point to the correct directory. (For MTI, use the vsystem.ini or modelsim.ini file to do
this). Then use a configuration block to tell the simulator which library elements to use for each instance. For exam-
ple, . . .

-- VHDL netlist for testing 3C/3T PIC architecture: Example 1
-- vsystem.ini or modelsim.ini contains : “ORCA3 = $FOUNDRY/vhdl/data/orca3/mti/work”
-- where $FOUNDRY points to the Foundry tools base directory
library IEEE, ORCA3;

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
Lattice Semiconductor 18

I/O Cell and PIC Cell Instantiation in VHDL (continued)

use IEEE.std_logic_1164.all;
use ORCA3.orcacomp.all;

entity pic_example1 is

end pic_example1;

architecture Structure of pic_example1 is

end Structure;

configuration Structure_CON of pic_example1 is
 for Structure
 for all: vhi use entity ORCA3.vhi(V); end for;
 for all: vlo use entity ORCA3.vlo(V); end for;
 for all: clkcntlr use entity ORCA3.clkcntlr(V); end for;
 for all: ibmpus use entity ORCA3.ibmpus(V); end for;
 for all: ilf2p3dx use entity ORCA3.ilf2p3dx(V); end for;
 for all: fd1p3dx use entity ORCA3.fd1p3dx(V); end for;
 for all: ofs1p3dx use entity ORCA3.ofs1p3dx(V); end for;
 for all: obz12fpd use entity ORCA3.obz12fpd(V); end for;
 end for;
end Structure_CON;

I/O Cell and PIC Cell Instantiation in Verilog*

Declaring and instantiating components into a Verilog design is even easier. Simply declare Verilog modules from
the library with instance names, and map the ports accordingly. (The Verilog library modules are each stored as a
separate Verilog file (module_name.v) in /foundry_directory/verilog/data/orca3.) Here is an example of the same
circuit rewritten in Verilog:

// Verilog design for testing 3C/3T PIC: Example 1
module PIC_EXM1(CLK,ECKR,CKENA,CLEAR,TRI,DATAI,DATAO);
 input CLK,ECKR,CKENA,CLEAR,TRI,DATAI;
 output DATAO;
 reg RDATA1, RDATA2;
 wire DRHI, DRLO, ECKR_INT, DATAI_INT, DATAO_INT;
 // instantiate components
 VHI VH1 (DRHI);
 VLO VL1 (DRLO);
 CLKCNTLR CL1 (ECKR, DRLO, ECKR_INT);
 IBMPUS IB1 (DATAI, DATAI_INT);
 ILF2P3DX ILF1 (DATAI_INT, CKENA, ECKR_INT, CLK, CLEAR, RDATA1);
 FD1P3DX FF1 (RDATA1, CKENA, CLK, CLEAR, RDATA2); // QN not mapped
 OFS1P3DX OF1 (RDATA2, CKENA, CLK, CLEAR, DATAO_INT);
 OBZ12FPD OB1 (DATAO_INT,TRI,DATAO);
endmodule

To simulate this design, you will need to include the libraries of all Series 3 modules you wish to instantiate. On a
UNIX† workstation, you can modify your design to add the following compiler directives to the top of your Verilog
source code (where /foundry_directory is the path to the ORCA Foundry tools base directory):

`timescale 1 ns / 100 ps
`include "/foundry_directory/verilog/data/orca3/VHI.v"
`include "/foundry_directory/verilog/data/orca3/VLO.v"
`include "/foundry_directory/verilog/data/orca3/CLKCNTLR.v"
`include "/foundry_directory/verilog/data/orca3/IBMPUS.v"
`include "/foundry_directory/verilog/data/orca3/ILF2P3DX.v"

* Verilog is a registered trademarks of Cadance Design Systems, Inc.
†UNIX is a registered trademark of X/Open Company, Ltd.

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
19 Lattice Semiconductor

I/O Cell and PIC Cell Instantiation in VHDL (continued)

`include "/foundry_directory/verilog/data/orca3/FD1P3DX.v"
`include "/foundry_directory/verilog/data/orca3/OFS1P3DX.v"
`include "/foundry_directory/verilog/data/orca3/OBZ12FPD.v"

module PIC_EXM1(CLK,ECKR,CKENA,CLEAR,TRI,DATAI,DATAO);

end module

Or, you can just specify the library directory when compiling for simulation at the command prompt. For example,
in MTI:

vlog -y $FOUNDRY/verilog/data/orca3 +libext+.v design.v

where $FOUNDRY points to your Foundry tools’ base directory, and design.v is your top level source code.

Express Clock Instantiation in VHDL and Verilog

If PIC output flip-flops are used, the designer has the option of using an Express clock or a system clock. Also, if
PIC input latched flip-flops are used, the designer must use Express clock to enable the latch. Also, several of the
PIC gates and one of the PIC multiplexers accept express clock as an input. However, to use an Express clock, the
designer must remember to instantiate the correct clock controller (CLKCNTLx) or programmable clock manager
(PCM) in the design and LOC its corresponding input pad (ECKx or SECKxx). The choice of clock controller
depends on which edge of the array the PICs in question reside on. If there are PICs on all four edges of the device
which require Express clock, then either of the following must occur:

1. Instantiate all four clock controllers and LOC all four ECKx pads.

2. Instantiate both PCMs and LOC both corner SECKxx pads.

3. A combination of 1. and 2. which guarantees that all PICs are getting an Express clock.

Here is a short example of how to instantiate a CLKCNTLR cell and LOC its ECKR pad using attributes in VHDL
source code. This design was targeted at an OR3T55 in a 208-pin SQFP package.

-- VHDL netlist for demonstrating 3C/3T express clock instantiation
library IEEE, ORCA3;
use IEEE.std_logic_1164.all;
-- use ORCA3.orcacomp.all;

entity pictest is
 port (clk: in std_logic;
 eckr: in std_logic; ⇐⇐⇐⇐ ECKR PORT LISTED
 -- other ports declared here

);
attribute LOC : string;
attribute LOC of eckr : signal is "131"; ⇐⇐⇐⇐ ECKR PAD LOCATION ATTRIBUTE

end pictest;

architecture Structure of pictest is
 -- internal signal declarations

signal drlo : std_logic;
signal eckr_int: std_logic;

 -- other signals declared here
 -- local component declarations

COMPONENT clkcntlr ⇐⇐⇐⇐ RIGHT CLOCK CONTROLLER COMPONENT
PORT(clkin : IN std_logic := 'X';
 shutoff : IN std_logic := 'X';
 clkout : OUT std_logic := 'X');
END COMPONENT;

COMPONENT vlo

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
Lattice Semiconductor 20

I/O Cell and PIC Cell Instantiation in VHDL (continued)

PORT(z: OUT std_logic := 'X');
END COMPONENT;

-- other components declared here
begin
 -- component instantiation statements

drive_lo: vlo
port map (drlo);

right_xclk: clkcntlr ⇐⇐⇐⇐ RIGHT CLOCK CONTROLLER INSTANTIATED
port map (eckr,

 drlo, -- assumes direct port mapping
 eckr_int);
-- other components instantiated here

end Structure;

Here is the same example using Verilog source code. The ECKR pin location must be specified using the synthesis
tools.

// Verilog design for testing 3C/3T PIC: Example 1
module PIC_EXM1(CLK,ECKR, …);
 input CLK,ECKR, …;
 output …;
 reg …;
 wire DRLO, ECKR_INT, …;

 // instantiate components
 VLO VL1 (DRLO);
 CLKCNTLR CL1 (ECKR, DRLO, ECKR_INT);
 :
endmodule

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
21 Lattice Semiconductor

Methods to Assign Special Properties to PIC Resources

The I/O registers, latches, buffers, pads, and other resources in each PIC frequently need additional information
assigned to them in order to allow the Foundry tools to implement a functioning design with the desired timing.
Things such as I/O pad locations, frequency, input setup times, clock-to-output times, output loads, etc, may need
to be specified. The primary method of passing this information to the Foundry tools is through the preference file.
However, other methods may exist to pass this information into the preference file, such as via VHDL attributes,
synthesis directives, or by using a logical preference file. One advantage of the logical preference file is the ability
to use wildcards to specify net names.

Methods to LOC I/O Pins

Source Code

There are several ways to assign the input and output pins of your design to the physical pad locations of the
device. If you are using VHDL, you can make these assignments in the source code using attribute statements and
the LOC property. The synthesis tool will pass this information into the EDIF file, and the mapper will convert them
into the preference file. For example, to assign input name to pad 77:

entity pictest is
 port (name: in std_logic;
 -- other ports declared here

);
attribute LOC : string;
attribute LOC of name : signal is "77";

end pictest;

In Verilog, there is no method of assigning pad locations to your I/O.

Preference File

The preference LOCATE command can be inserted into the preference file (.prf) to dictate where an I/O pad should
be placed. For example, consider the following line in a preference file:

LOCATE COMP “name” SITE “77”;

This will force the Foundry tools to place the pad for signal name at pin 77 of the device.

Logical Preference File

There is no way to locate I/O pads in a logical preference file.

Synthesis Tools

Your synthesis tools will usually also have a method of entering I/O pad assignments using some commands and/
or constraint file. This information should be converted into a Foundry preference file (.prf) for use by the Foundry
tools, or inserted into the EDIF file during synthesis, in which case the mapper will convert them to preferences.
Refer to your synthesis vendor’s documentation.

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
Lattice Semiconductor 22

Methods to Assign Special Properties to PIC Resources (continued)

Methods to Specify PIC Timing Constraints: Input Setup (to a PIC Input Register)

An input setup time specifies a setup time requirement for registered input ports relative to a clock net.

Preference File

The OFFSET IN command can be used in the preference file to dictate an input’s setup time. For example:

OFFSET IN COMP “inport_name” 5.0 NS BEFORE COMP “clk”;

Logical Preference File (Use lp2prf to Translate into a Preference)

INPUT_SETUP inport_name 5 NS CLKNET = “clk”;

Methods to Specify PIC Timing Constraints: Clock to Output (from a PIC Output Register)

A clock-to-output time specifies a maximum allowable output delay for registered output ports relative to a clock
net.

Preference File

The OFFSET OUT command can be used in the preference file to dictate an output’s clock-to-output time. For
example:

OFFSET OUT COMP “outport_name” 20.0 NS AFTER COMP “clk”;

Logical Preference File (Use lp2prf to Translate into a Preference)

CLOCK_TO_OUT outport_name 20 NS CLKNET = “clk”;

Methods to Specify PIC Timing Constraints: Frequency/Period (from/to a PIC register)

A frequency or period value specifies the minimum frequency (or maximum period) at which sequential circuits
must operate. When applied to PIC registers, it can apply to the timing between a PIC register and a PLC register,
or between PIC registers. Note that this preference takes into account all logic and routing delays and any clock
skew, so it is the most reliable method of preferencing a synchronous circuit’s speed of operation. A FREQUENCY
or PERIOD command can be used in the preference file to dictate a synchronous circuit’s required clock rate. For
example, for a fully synchronous 50 MHz design with clock input clk:

Preference File

FREQUENCY NET “clk” 50 MHz;
or
PERIOD NET “clk” 20 NS HIGH 10 NS;

Logical Preference File (Use lp2prf to Translate into a Preference)

FREQUENCY PORT “clk” 50 MHz;
or
PERIOD PORT “clk” 20 NS HIGH 10 NS;

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
23 Lattice Semiconductor

Methods to Assign Special Properties to PIC Resources (continued)

Methods to Specify PIC Timing Constraints: Multicycle (from/to a PIC Register)

A multicycle value specifies a relaxation of a previously specified FREQUENCY or PERIOD preference on a syn-
chronous path(s). For example, if one portion of a synchronous design may only need to operate at one-half the
clock frequency of the rest of the design, then a 2X multicycle value may be assigned to those paths. When applied
to PIC registers, remember that you wish to create a preference from FF to FF, not to an I/O pad. For example, sup-
pose we want a multicycle preference from a PLC register to a PIC output register:

Preference File

MULTICYCLE “M1” START COMP “PFU_n” NET “net_name” END COMP “outport_name” 2 X;

M1 is just a label. PFU_n is a physical PFU name, net_name is a physical net name, and outport_name is an
actual output port name.

Logical Preference File (Use lp2prf to translate into a preference)

MULTICYCLE FROM CELL “plcreg” TO CELL “pic_outreg” 2 X;

In this correct implementation, plcreg and pic_outreg are instance names of registers. The synthesis tool may cre-
ate register instance names that differ drastically from names in the source code. Also note that this is not the
same as the following incorrect line:

MULTICYCLE FROM CELL “plcreg” TO PORT “outport_name” 2 X;

This line creates a timing preference from a PLC register output all the way to an output pad named outport_name.
This will create a define path preference and a maxdelay preference on that path in the .prf file when lp2prf is exe-
cuted.

Other PIC Timing Information

Preferences, logical preferences, VHDL properties, and synthesis vendor commands also exist for specifying the
following timing values. Refer to the ORCA Foundry documentation CD or your synthesis vendor’s documentation
for information on how to implement these values.

maxdelay—Specifies a maximum total delay for a net or path. When applied to PIC timing, it is recommended that
it should only be used for asynchronous I/O timing, either between some internal PLC logic and a PIC resource, or
between a PIC resource and an external pad. If a PIO is being used synchronously, use the previously described
synchronous preferences instead.

maxskew—Specifies a maximum signal skew between a driver and loads on a specified clock signal. When
applied to PIC timing, it refers to the ECLK or SCLK signal which drives the corresponding PICs.

Other I/O Features

Preferences, logical preferences, VHDL properties, and synthesis vendor commands also exist for specifying such
values as output load, slew rate, and input delay mode. Refer to the ORCA Foundry documentation CD or your
synthesis vendor’s documentation for information on how to implement these values.

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
Lattice Semiconductor 24

Methods to Assign Special Properties to PIC Resources (continued)

Applications

Microprocessor and/or Bus Interface with MUXed/deMUXed Address/Data

The Series 3 PIC is well designed for applications requiring an interface to external multiplexed address and data
buses, such as may be found on various types of microprocessor buses (Intel i960*) and system buses (PCI,
VME64). In one case, the PICs may have to receive a multiplexed address/data bus and demultiplex it for internal
use. In another case, the PICs may have to multiplex internal address and data to drive an external bus. In a bus
with master/slave arbitration, the PICs may have to do both multiplexing and demultiplexing using bidirectional
I/O.

* Intel and i960 are registered trademarks of Intel Corporation.

Case 1: Input Demultiplexer (same clock for address and data)

To demultiplex an incoming address/data bus, the PIO latch or FF can be used to store one bit of the address on
one edge of the SCLK, while an adjacent PLC FF stores a bit of the data on the other edge. This is shown in Figure
4. For example:

-- VHDL netlist for testing 3C/3T PIC architecture
-- Input Demultiplex

library IEEE, ORCA3;
use IEEE.std_logic_1164.all;

COMPONENT ifs1s1d -- PIC input latch
PORT(d: IN std_logic := 'X';

sclk: IN std_logic := 'X';
cd : IN std_logic := 'X';
q : OUT std_logic := 'X');

END COMPONENT;

COMPONENT fd1p3dx -- PLC flip-flop
PORT(d : IN std_logic := 'X';

sp: IN std_logic := 'X';
ck: IN std_logic := 'X';
cd: IN std_logic := 'X';
q : OUT std_logic := 'X';
qn: OUT std_logic := 'X');

END COMPONENT;

COMPONENT vhi
PORT(z: OUT std_logic := 'X');
END COMPONENT;

COMPONENT vlo
PORT(z: OUT std_logic := 'X');
END COMPONENT;

COMPONENT sand8 -- SLIC and8
PORT(a: IN std_logic := 'X';

b: IN std_logic := 'X';
c: IN std_logic := 'X';
d: IN std_logic := 'X';
e: IN std_logic := 'X';
f: IN std_logic := 'X';
g: IN std_logic := 'X';
h: IN std_logic := 'X';
z: OUT std_logic := 'X');

END COMPONENT;

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
25 Lattice Semiconductor

Methods to Assign Special Properties to PIC Resources (continued)

begin
 -- component instantiation statements

drive_hi: vhi port map (drhi);
drive_lo: vlo port map (drlo);

g1: for i in 0 to 7 generate
 pio_latch: ifs1s1d port map (adin(i), clk, drlo, abus(i));

 plc_reg: fd1p3dx port map (adin(i), csel, clk, drlo, dbus(i)); -- qn output not specified
end generate;

addr_dec: sand8
port map (abus(0), abus(1), abus(2), abus(3),

 abus(4), abus(5), abus(6), abus(7),
 csel);

end Structure;

Case 2: Input Demultiplexing (seperate data clock and address enable)

If an address enable is used to latch the address instead of the clock, it is done by replacing the SCLK signal at the
PIO latch with the address enable signal. Note that performing the address latch function in the FF and clocking the
data into the PIO FF is also valid for Case 1 and Case 2. This allows trade-offs of I/O performance of these two
functions.

use ORCA3.orcacomp.all;

entity demux1 is
 port (clk: in std_logic;
 adin: in std_logic_vector(7 DOWNTO 0);

-- outputs listed here
);

end demux1;

architecture Structure of demux1 is
 -- internal signal declarations
 signal drhi, drlo : std_logic;
 signal abus, dbus : std_logic_vector(7 DOWNTO 0);

 -- local component declarations
COMPONENT ifs1s1d -- PIC input latch
PORT(d : IN std_logic := 'X';

sclk: IN std_logic := 'X';
cd : IN std_logic := 'X';
q : OUT std_logic := 'X');

END COMPONENT;

COMPONENT fd1p3dx -- PLC flip-flop
PORT(d : IN std_logic := 'X';

sp: IN std_logic := 'X';
ck: IN std_logic := 'X';
cd: IN std_logic := 'X';
q : OUT std_logic := 'X';
qn: OUT std_logic := 'X');

END COMPONENT;

COMPONENT vhi
PORT(z: OUT std_logic := 'X');
END COMPONENT;

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
Lattice Semiconductor 26

Methods to Assign Special Properties to PIC Resources (continued)

COMPONENT vlo
PORT(z: OUT std_logic := 'X');
END COMPONENT;

begin
 -- component instantiation statements

drive_hi: vhi port map (drhi);
drive_lo: vlo port map (drlo);

g1: for i in 0 to 7 generate
 pio_latch: ifs1s1d port map (adin(i), clk, drlo, abus(i));

 plc_reg: fd1p3dx port map (adin(i), drhi, clk, drlo, dbus(i)); -- qn output not specified
end generate;

end Structure;

Case 3: Output Multiplexing

To multiplex separate buses into a single address/data output bus, use the OSMUX21 or OEMUX21 element and
route the address bit to OUT1 and the data bit to OUT2. Depending on what phasing you want between address
and data, you can use the PIO output FF to delay the address or data by another ECLK or SCLK cycle. This puts
the PIO in OUT1OUTREG mode or OUT2OUTREG mode. This is shown in Figure 5.

5-5797(F)

Figure 4. PIC Output Multiplexing

PLC

D Q

CLK

PAD
P/O

LOGIC

OUT1

OUT2

PIC

DATA

CLK

REG ADDRESS

DATA

ADDR1 ADDR2 ADDR3 ADDR4

DATA1 DATA2 DATA3 DATA4

DATA1 DATA2ADDR1 ADDR2 ADDR3 ADDR4DATA3PAD

ADDR ADDR1 ADDR2 ADDR3 ADDR4 ADDR5

FROM
ROUTING

ADDRESS
FROM

ROUTING

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
27 Lattice Semiconductor

Methods to Assign Special Properties to PIC Resources (continued)

Here is a VHDL example of how to instantiate such a circuit:

-- VHDL netlist for testing 3C/3T PIC architecture
-- Output Multiplexer, OUT2OUTREG mode

library IEEE, ORCA3;
use IEEE.std_logic_1164.all;
use ORCA3.orcacomp.all;

entity omux1 is
 port (clk: in std_logic;
 adout: out std_logic_vector(7 DOWNTO 0);

-- other inputs and outputs listed here
);

end omux1;

architecture Structure of omux1 is
 -- internal signal declarations
 signal drhi : std_logic;
 signal drlo : std_logic;
 signal abus : std_logic_vector(7 DOWNTO 0);
 signal rabus : std_logic_vector(7 DOWNTO 0);
 signal dbus : std_logic_vector(7 DOWNTO 0);
 -- local component declarations

COMPONENT vhi
PORT(z: OUT std_logic := 'X');
END COMPONENT;

COMPONENT vlo
PORT(z: OUT std_logic := 'X');
END COMPONENT;

COMPONENT osmux21 -- PIC output Mux
PORT(d0: IN std_logic := 'X';
 d1: IN std_logic := 'X';
 sclk: IN std_logic := 'X';
 z : OUT std_logic := 'X');
END COMPONENT;

COMPONENT ofs1p3dx -- PIC output FF
PORT(d : IN std_logic := 'X';
 sp: IN std_logic := 'X';
 sclk: IN std_logic := 'X';
 cd: IN std_logic := 'X';
 q : OUT std_logic := 'X');
END COMPONENT;

begin
 -- component instantiation statements

drive_hi: vhi port map (drhi);
drive_lo: vlo port map (drlo);

g1: for i in 0 to 7 generate
 pio_oreg: ofs1p3dx port map (abus(i), drhi, clk, drlo, rabus(i));
 pio_mux: osmux21 port map (rabus(i),dbus(i),clk,adout(i));
end generate;

end Structure;

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
Lattice Semiconductor 28

Methods to Assign Special Properties to PIC Resources (continued)

Fast Address Decode Using SLICs Next to PICs

An address input from an external bus can also be decoded very quickly using the SLICs in the PLCs adjacent to
the PICs. The decode bit(s) could then be used to select various internal registers for reads or writes. Using the
input demultiplexer example above (CASE 1), the address latch outputs from the PIOs could be routed to a nearby
SLIC for decoding, and the decode bit(s) could drive the clock enable of the PLC data register to be written to, as
seen in Figure 4.

5-5798(F)

Figure 5. PIO Input Demultiplexing

To instantiate such a circuit using VHDL:

library IEEE, ORCA3;
use IEEE.std_logic_1164.all;
use ORCA3.orcacomp.all;

entity demux2 is
 port (clk: in std_logic;
 adin: in std_logic_vector(7 DOWNTO 0);

-- outputs listed here
);

end demux2;

DEC
D QPAD

PIO

D Q

EN

SLIC

OTHER ADDRESS
LINES

SCLK

IN1

IN2

CLK

PIC LATCH

PLC FF

ADDR0 ADDR1 ADDR2 ADDR3 ADDR4

DATA1 DATA2 DATA3 DATA4

DATA1 DATA2 DATA3ADDR1 ADDR2 ADDR3 ADDR4

DATA0

DATA4

OUTPUT

OUTPUT

PIC INPUT

PLC

CLK

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
29 Lattice Semiconductor

Methods to Assign Special Properties to PIC Resources (continued)

architecture Structure of demux2 is
 -- internal signal declarations
 signal drhi, drlo : std_logic;
 signal abus, dbus : std_logic_vector(7 DOWNTO 0);
 signal csel : std_logic;

 -- local component declarations

Zero Hold and Programmable Delay Input

The designer can use the zero-hold flip-flop mode or the programmable delay input capabilities of the PIO to imple-
ment a zero hold input capture. The zero-hold flip-flop mode requires the combined use of both the SCLK and
ECLK to drive the PIO flip-flop’s clock pin and the latch clock, respectively.

5-5974(F)

Figure 6. Fast Capture (Zero-Hold FF)

D QINPUT DATA

LATCH

CLK
O

I
EXPRESSCLK

O

I
SYSTEM CLK

CD = 1

CLOCK ENABLE

LOCAL SET/RESET

D Q

FF

S/R

CE

DATA OUT
TO PIC ROUTING

EXPRESSCLK

SYSTEM CLK

INPUT DATA

QLATCH

QFF

BA C D E

BA C D E

A B C D

Application Note
January 2002 Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
Lattice Semiconductor 30

Methods to Assign Special Properties to PIC Resources (continued)

To instantiate this zero-hold circuit in Verilog:

// Verilog design for testing 3C/3T PIC: Zero Hold
module NOHOLD (SCLK,ECKR,DATAI,DATAO);
 input SCLK,ECKR,DATAI;
 output DATAO;
 wire DRHI, DRLO, ECKR_INT, DATAI_INT;
 // instantiate components
 VHI VH1 (DRHI);
 VLO VL1 (DRLO);
 CLKCNTLR CL1 (ECKR, DRLO, ECKR_INT);
 IBMS IB1 (DATAI,DATAI_INT);
 ILF2P3DX ILF1 (DATAI_INT, DRHI, ECKR_INT, SCLK, DRLO, DATAO);
endmodule

The ECLK pad location must be assigned in the preference file. There is one ECLK pin at the center of each side of
the array, with a secondary ECLK pin available in the lower-left and upper-right corners. Also, clock enable and
reset have been defaulted to simplify the example.

If an ECLK is not used for the clock, then a programmable delay input needs to be used with the PIO input FF.
These are used by instantiating an input buffer whose name ends with an "s", such as IBMs. There are no clock
restrictions with using this type of I/O buffer to obtain a zero hold, but the setup time to the FF will be slightly
degraded vs. using a zero-hold flip-flop.

High-Speed 3-State Enable/Disable FF

In the Series 3 architechture, an extra FF in every PIO is available to register the 3-state enable/disable signal, thus
allowing very fast bus turn around times.

High-Speed Clock-To-Output (TCO)

It has been noted already that by using a PIC register with an Express clock and a fast output buffer, extremely fast
synchronous outputs can be generated. For example, in a OR3T80-7, the expected clock-to-output delay from an
ECLK middle input pin to the PIC output pin (fast buffer, same side as ECLK, 50 pF load) is 4.5 ns (see data book,
Timing Characteristics). Subsequent speed grades (-8, etc.) will naturally be faster. If external clock skew is mini-
mized and external devices with fast setup times are used, this registered output can enable system speeds of
+100 MHz.

CAUTION: If this output approach is used with wide buses, care must be taken to minimize ground bounce.

Fast Open-Drain Output—Shared Interrupt Line

The PIO output buffers can easily be configured for open-drain outputs, for applications such as a wired-OR inter-
rupt signal to a microprocessor. The input signal to the 3-statable buffer can be directly tied to the buffer’s 3-state
control signal. Therefore, if the signal at the input to the buffer is a logical 0, the output is low, but if the input is a
logical 1, the output is forced to high impedance. This open drain can easily be implemented in the source code
and inferred by a synthesis tool as follows:

-- VHDL netlist for testing 3C/3T PIC architecture
-- Open drain output, inferred

library IEEE;
use IEEE.std_logic_1164.all;

entity odrain is
 port (din: in std_logic;

 dout1: out std_logic;
 dout2: out std_logic);

end odrain;

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
31 Lattice Semiconductor

Methods to Assign Special Properties to PIC Resources (continued)

architecture Behavioral of odrain is
 signal mid : std_logic;
begin
 mid <= din;
dout1 <= '0' when (mid = '0') else 'Z';
 dout2 <= mid when (mid = '0') else 'Z';
end Behavioral;

In this example, dout2 will implement the fast open-drain output correctly, routing the mid signal through the PIC’s
OUT1 or OUT2 data path to the 3-state buffer’s input and control pin in parallel. Dout1 will accomplish a similar
function, but is not a true fast open-drain output. Dout1 will tie a VLO library element’s output through OUT1 or
OUT2 to the 3-state buffer’s input and connect mid to the buffer’s control pin via a separate route. Therefore, use
the dout2 method.

An open-drain can also be instantiated using any of the OBZxxx output buffers. For example:

-- VHDL netlist for testing 3C/3T PIC architecture
-- Open drain output, instantiated

library IEEE;
use IEEE.std_logic_1164.all;

entity odrain2 is
 port (din: in std_logic;

 dout: out std_logic);
end odrain2;

architecture Structural of odrain2 is
 component ibm
 port(i: IN std_logic := 'X';
 o: OUT std_logic);
 end component;

 component obz6
 port(i: IN std_logic := 'X';
 t: IN std_logic := 'X';
 o: OUT std_logic);
 end component;

 signal mid : std_logic;
begin
 ibuf: ibm port map (din,mid);
 obuf: obz6 port map (mid,mid,dout);
end Structural;

Output Logic (AND, NAND, etc.)—OUT2 with ECLK or SCLK

The logic block inside each PIO allows the designer the ability to combine signals at the I/O to increase the speed
of signals being sent off-chip. Either SCLK or ECLK can be gated with the OUT2 signal. Logic functions include
AND, NAND, OR, NOR, XOR, and XNOR. Two examples of this are an address decode, where two signals are
gated through an AND gate, and Parity generation where two signals are gated through an XOR gate. One of the
two signals in these examples would come from one side of the AND/XOR tree and would connect to the OUT2 pin
(available for each PIO), while the other signal would come from the other side of the AND/XOR tree and would
connect to either the SCLK pin (available for each PIC) or the ECLK pin (available for each side of the device). This
circuit could also be used to generate short external pulses through gated clocks.

Since this is an asynchronous circuit, great care must be taken to control the timing between signals to avoid
unwanted glitches (see Note below). For example, the designer may want an internal flip-flop’s output to be ANDed
with its own SCLK and then drive this gated clock directly out to some external device.

Application Note
January 2002Logic, Clocking, Routing, and External Device Interface

ORCA Series 3 FPGAs Programmable I/O Cell (PIC):
Methods to Assign Special Properties to PIC Resources (continued)

To instantiate this PIO logic (AND function) in VHDL:

-- VHDL netlist for testing 3C/3T PIC architecture
-- PIO logic

library IEEE;
use IEEE.std_logic_1164.all;

entity piolog is
 port (in1: in std_logic;

 in2: in std_logic;
 and-out: out std_logic);

end piolog;

architecture mixed of piolog is
 component osand2
 port(a: IN std_logic := 'X';

sclk: IN std_logic := 'X';
z: OUT std_logic := 'X');

end component;

begin

 gate: osand2 port map (in1,in2,and-out);
end mixed;

Synthesis tools do not infer PIO logic at this time.

Note: Gated clocks should be a last resort. It is a much better design practice to use nongated clocks and drive a
clock enable pin to control data flow whenever possible. The same signal which drives the SCLK or ECLK
pad of the FPGA should drive the external device’s clock pin, and a synchronous signal from PIC output reg-
ister should drive the external device’s clock enable. This maintains a fully synchronous design which will be
easier to debug and less prone to clock glitches.

Conclusion

The ORCA Series 3 PIC’s numerous logic and routing features make it a flexible, high-speed interface between the
external system and the Series 3’s core logic array. The PICs are an integral part of the Series 3 architecture which
allow these FPGAs to operate in a variety of modern high-speed digital applications.
www.latticesemi.com

Copyright © 2002 Lattice Semiconductor
All Rights Reserved
Printed in U.S.A.

January 2002
AP99-042FPGA

	Abstract
	Introduction
	PIC Features and Benefits
	List of Tables
	List of Figures
	Table 1 . Input Features and Benefits
	Table 2 . Output Features and Benefits
	Table 3 . Control Signal Features and Benefits
	Table 4 . Grouping and Routing Features

	PIC Architecture Description
	Overview
	Programmable Input/Output (PIO)
	Figure 1 . OR3Txx/OR3LxxxB
	PIO Inputs
	PIO Outputs
	PIC Routing Resources
	Figure 2 . Series 3 PIC in EPIC
	PIC Clocking
	PIC Set/Reset
	Figure 3 . Clock Routing

	Design Implementation
	PIC Library Cells
	Table 5 . Input Buffer Cells
	Table 6 . Output Buffer Cells
	Table 7 . Bidirectional Buffer Cells
	Table 8 . Bidirectional Buffer with Delayed Input Cells
	Table 9 . PIC Cells for Use with Series 3
	Table 10 . PIC Multiplexer Cells
	Table 11 . PIC Input Flip-Flop Cells
	Table 12 . PIC Output Flip-Flop Cells
	Table 13 . PIC Input Latched Flip-Flop Cells
	Table 14 . PIC Input Latch Cells

	I/O Cell and PIC Cell Instantiation in VHDL
	I/O Cell and PIC Cell Instantiation in Verilog*
	Express Clock Instantiation in VHDL and Verilog

	Methods to Assign Special Properties to PIC Resources
	Methods to LOC I/O Pins
	Methods to Specify PIC Timing Constraints: Input Setup (to a PIC Input Register)
	Methods to Specify PIC Timing Constraints: Clock to Output (from a PIC Output Register)
	Methods to Specify PIC Timing Constraints: Frequency/Period (from/to a PIC register)
	Methods to Specify PIC Timing Constraints: Multicycle (from/to a PIC Register)
	Applications
	Figure 4 . PIC Output Multiplexing
	Figure 5 . PIO Input Demultiplexing
	Figure 6 . Fast Capture (Zero-Hold FF)

	Conclusion

