
Lattice Radiant Software IP
User Guide

November 5, 2019

Lattice Radiant Software IP User Guide 2

Copyright
Copyright © 2019 Lattice Semiconductor Corporation. All rights reserved. This
document may not, in whole or part, be reproduced, modified, distributed, or publicly
displayed without prior written consent from Lattice Semiconductor Corporation
(“Lattice”).

Trademarks
All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and
Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks
of Aldec, Inc. All other trademarks are the property of their respective owners.

Disclaimers
NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE
LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN
LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. Lattice makes no commitment to
update this documentation. Lattice reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. Lattice
recommends its customers obtain the latest version of the relevant information to
establish that the information being relied upon is current and before ordering any
products.

http://www.latticesemi.com/legal

Lattice Radiant Software IP User Guide 3

Type Conventions Used in This Document

Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

Lattice Radiant Software IP User Guide 4

Contents

Lattice Radiant Software IP User Guide 5

Designing with IP and PMI 5
PMI or IP Catalog? 6
Creating IP Catalog Components 7

Encrypting IPs 12
IP Encryption Flow 12

Packaging IP Using Radiant IP Packager 14
Preparing IP Files for Packaging 15
Running Radiant IP Packager 20
Generating an IPK File with IP Packager 20
Installing IP Created with IP Packager into IP Catalog 21

Metadata (.xml) File Structure 22

Revision History 28

Lattice Radiant Software IP User Guide 5

Chapter 1

Lattice Radiant Software IP
User Guide

Lattice provides pre-tested, reusable intellectual property (IP) functions.
These proven IP cores are optimized for Lattice device architecture, resulting
in fast, small cores that use the latest Lattice architectures to their fullest.

Lattice Radiant software provides enhanced IP functionality, which is
described in this user guide. Major topics include:

 “Designing with IP and PMI” on page 5

 “Encrypting IPs” on page 12

 “Packaging IP Using Radiant IP Packager” on page 14

Designing with IP and PMI
IP are functional bits of design that can be re-used wherever that function is
needed. Creating such components with hardware design languages is
common practice. To help your design along, the Radiant software provides a
variety of components for common functions. They are optimized for Radiant
software device architectures and can be customized. Use these components
to speed up your design work and to get the most effective results.

Radiant software components come in a variety of forms:

 Modules: These basic, configurable blocks come with IP Catalog. They
provide a variety of functions including I/O, arithmetic, memory, and more.
Open IP Catalog to see the full list of what’s available.

 IP: Intellectual property (IP) are more complex, configurable blocks. They
are accessible through IP Catalog, but they do not come with the tool.
They must first be downloaded and installed as a separate step before
they can be accessed from IP Catalog. To see all that’s available and to
learn about licensing and other vendors of IP, go to the Lattice website:
www.latticesemi.com/ip.

http://www.latticesemi.com/ip

LATTICE RADIANT SOFTWARE IP USER GUIDE : Designing with IP and PMI

Lattice Radiant Software IP User Guide 6

 PMI (Parameterized Module Instantiation) is an alternate way to use some
of the components that come with IP Catalog. Instead of using IP Catalog,
PMI can directly instantiate a component into your HDL and customize it
by setting parameters in the HDL. You may find this easier than using IP
Catalog if your design requires many variations of the same component.
To decide which method to use, see “PMI or IP Catalog?” on page 6.

 Reference designs provide you with a starting point on creating your own
components. Lattice Reference Designs are available in Verilog and
VHDL, and can be downloaded from the Lattice website:
www.latticesemi.com/ip.

 Lattice library primitives are very basic functions, such as logic gates and
flip-flops. They can be directly instantiated as HDL into designs. But this is
an advanced technique and should usually be avoided.

IP Catalog provides a variety of functions ranging from the most basic, such
as arithmetic and memory, to much more complex functions. With IP Catalog
these components can be extensively customized and created as part of a
specific project or as a library for multiple projects. See “Creating IP Catalog
Components” on page 7.

However, many of these components can also be used with PMI (see next
item). To decide which method to use, see “PMI or IP Catalog?” on page 6.

PMI or IP Catalog?
Many IP Catalog components are also available as PMI components, but PMI
doesn’t offer error checking. This and the next two sections discuss the pros
and cons of both options to help you decide which is best for your project.

PMI is a convenient way to use components of the same type but that vary
from instance to instance. This eliminates the need to create a separate
component for each instance using IP Catalog.

For example, a design might require dozens of FIFOs that are functionally the
same but require different address depths. With PMI, you could insert the
same FIFO instantiation command wherever it’s needed in the HDL and just
change the address depth parameter as you go. The alternative would be to
use IP Catalog to generate different components for each variation and then
insert the instantiation template for each of them. In this situation, you might
find the PMI method easier and faster.

Before deciding whether to use a PMI component, compare it to the
equivalent IP Catalog component. Often IP Catalog provides more options
than PMI does. IP Catalog also assures that all of your option selections and
parameter settings are legal. PMI offers no error checking.

http://www.latticesemi.com/ip

LATTICE RADIANT SOFTWARE IP USER GUIDE : Designing with IP and PMI

Lattice Radiant Software IP User Guide 7

Creating IP Catalog Components
IP Catalog is an easy way to use a collection of functional blocks from the
Radiant software. There are two types of components available through IP
Catalog: modules and IP. IP Catalog enables you to extensively customize
these components. They can be created as part of a specific project or as a
library for multiple projects.

Below are the basic steps of using IP Catalog IP. For details of performing
these steps, see the following topics.

1. Open IP Catalog. IP Catalog is accessed via a tab at the lower left of the
Radiant software. Click the tab, or click in the tool bar, to view the list
of available components.

2. Customize the component. These IP can be extensively customized for
your design. The options range from setting the width of a data bus to
selecting features in a communications protocol.

3. Generate the component and bring its .ipx file into your project. Prior to
generating the component, select the option “Insert to project.” This will
automatically bring the .ipx file into your project after the generation step
completes. If you do not select this option, add the .ipx file to your project
as you would with any other source file (such as a Verilog or VHDL file)
after the generation is complete.

4. Instantiate the component into the project’s design. An HDL instance
template is generated during the generation step to simplify this step.

5. IP Catalog IP can be further modified or updated later. After the .ipx file
has been added to the Radiant software project, it is visible in the project’s
file list. Double-clicking the .ipx file brings up the component’s
configuration dialog box where changes can be made and the generation
process repeated.

Downloading IP from IP on Server
You can use the IP on Server tab of IP Catalog to download and install the
latest IP available from Lattice Semiconductor. Before you can download any
IP, you need to set up an Internet connection. If you haven’t already, choose
Tools > Options > General > Network Settings and fill in the dialog box.

The website also has links to other vendors of IP. To see all that’s available
and to learn about licensing and other vendors of IP, go to the Lattice website:
www.latticesemi.com/ip.

To download Lattice IP on Server:

1. In IP Catalog, click the IP on Server tab, located at the upper-left of the
tool. The software connects to the Lattice Semiconductor website.

http://www.latticesemi.com/ip

LATTICE RADIANT SOFTWARE IP USER GUIDE : Designing with IP and PMI

Lattice Radiant Software IP User Guide 8

2. Click the refresh icon to update the list.

3. Expand the folder tree and select the IP you want to download.

Information about the IP appears in the right pane including links for
additional information.

IP that are compatible with your selected device have icons highlighted in
dark blue . IP that are not compatible with your version of Radiant
software are have blue icons with a yellow triangle . Look for device
support information in the right pane.

4. To download the IP, click the IP and choose to the right of the IP name
in the list.

5. The downloaded IP is now added to the IP list in the IP on Local tab.

Using IP Catalog Search Features
IP Catalog has search features that allow you to search the list of IP and
modules by keywords, and also search by by type.

To use the IP Catalog search feature:

1. IP Catalog, click the icon in the upper right.

2. Search by bus type by clicking one or more of the ABH-Lite, APB, or
AS14-Stream boxes. The list of modules and IP will display modules that
support these bus types.

3. Search by keyword to display module names or IP that contain the
keyword in the name. For example, typing “adder” will display all modules
that have adder in the module name.

Regenerating IPs
The regenerate function is an easy way to update your IP without needing to
invoke the IP Catalog tool.

If your design was created in an older version of Radiant software, or if your
design was created for a different Lattice device, your IP may need to be
regenerated. Regenerating IP will update the IP to the current version.

You can regenerate one or or regenerate all IPs to update device information
or new new version to existing .ipx file.

To regenerate as single IP:

1. In the Radiant software file list, right-click the IP file you wish to
regenerate.

Note

If Catalog detects a new version of an IP on Server which has been installed in local,
the IP icon in IP on Server will alert you with a red dot next to the IP icon.

LATTICE RADIANT SOFTWARE IP USER GUIDE : Designing with IP and PMI

Lattice Radiant Software IP User Guide 9

2. In the dropdown menu, choose Regenerate.

To regenerate all IP in your design:

1. In the Radiant software file list, right-click anywhere in the File List.

2. To instantiate a PMI component:In the dropdown menu, choose
Regenerate All. A dialog box will pop up to allow you to select one or
more IP to regenerate.

Generating a Component with IP Catalog
Use IP Catalog to generate a customized functional block from any
component or installed IP.

To generate a component:

1. In the Module/IP tree, select the component that you want to generate.

2. To get more information about the component, in either the IP on Local
tab, or IP on Server tab, click on the module or IP, and then click on the
blue question mark . The IP Information page will appear on the right.

3. Double-click the Module/IP or click the Generate Module/IP Instance
button, located at the upper-left of the tool the In the Configuration tab.
Specify general project information and the base file name for the
component.

 Instance Name is the base name for the component’s files (that is,
with no extension).

 Create In is the location for the customized component’s files.

4. Click Next.

The component’s dialog box opens.

5. In the dialog box, select your desired options.When generating a PLL,
click Calculate to calculate divider settings and actual output frequencies
based on CLKI and desired frequencies.

6. Click Generate.

7. To automatically import the .ipx file into your project when the component
is generated, select Insert to project in the Check Generating Result
dialog box.

8. Click Finish.

IP Catalog Output Files for Components
IP Catalog creates the following output files for components under the
specified Project Path. The <file_name> comes from the File Name specified
in the Configuration tab.

LATTICE RADIANT SOFTWARE IP USER GUIDE : Designing with IP and PMI

Lattice Radiant Software IP User Guide 10

IP Catalog creates some different files for IP. These are documented in the
IP’s associated user guide.

Importing an IP Catalog Component into a Project
After generating component source files using IP Catalog, you can import the
component by importing the IP Catalog manifest file (.ipx). Components have
several files of different types, but you only need to import the .ipx. The .ipx
file identifies the components needed to make up the component.

Importing the files may not be necessary if the “Import IPX to project” option
was selected when the component was generated.

To import a component:

1. In the File List view, right-click the implementation folder () and choose
Add > Existing File.

2. Browse for the customized component’s .ipx file, <file_name>.ipx, and
select it.

3. Click Add.

The .ipx file is added to the File List view.

4. Check the Output Panel for error messages. If the component is not
targeted for the current device, try double-clicking the file to regenerate
the component.

After importing the component, you can further customize it for your design
project by changing options specific to the component. You can also update
older components or IP to the latest version.

Instantiating an IP Catalog Component
IP Catalog components are instantiated the same way other components are
in your HDL. When you generate components in IP Catalog, the tool also
generates Verilog and VHDL reference templates. You can instantiate the
reference templates for implementation or simulation flow of any design, as
needed.

Table 1: Output Files

File Name Description

<file_name>.ipx Manifest file. This file is loaded into the design project so
that modifications can be made to the component.

<file_name>_tmpl.v Instantiation template for Verilog netlist.

file_name>_tmpl.vhd Instantiation template for VHDL netlist

<file_name>.v Verilog HDL file for both synthesis and simulation.
Verilog output files declare implicit wire types.

tb_top.v Testbench for associated component.

LATTICE RADIANT SOFTWARE IP USER GUIDE : Designing with IP and PMI

Lattice Radiant Software IP User Guide 11

The instantiation file is located in the folder in which the component was
created. The file name is based on the component’s name:
<component_name>_tmpl.v or <component_name>_tmpl.vhd.

You can instantiate the IP Catalog component in one of the following ways:

 If you selected the option of not inserting the generated IP into your
project, browse to the <component_name>_tmpl.v or
<component_name>_tmpl.vhd, open the file in a text editor, copy the text,
and paste into your source file. Then, add an instance and signal names
to the component ports.

 If you selected the option of inserting the generated IP into your project,
the IP component configuration file (.ipx) appears in your design
implementation.

In the File List, right-click the .ipx file, and choose the instantiation
command:

 For Verilog, choose Copy Verilog Instantiation, and paste it into
your source file. Then, add an instance and signal names to the
component ports.

 For VHDL, choose Copy VHDL Component, and paste it into
your source file; then choose Copy VHDL Instantiation, and
paste it into your source file. Then, add an instance and signal
names to the component ports.

Instantiating a PMI Component
PMI components are instantiated the same way other components are in your
HDL. The Radiant software provides a template for the Verilog or VHDL
instantiation command that specifies the customized component’s ports and
parameters. Customize the component by changing its parameters.

To instantiate a PMI component:

1. With Source Editor, open the source file that will receive the component.

2. Drag and drop the text into your source file.

3. Add an instance name, set parameter values, and add signal names to
the corresponding component ports in the instantiation command, as
shown in Figure 1 on page 12.

LATTICE RADIANT SOFTWARE IP USER GUIDE : Encrypting IPs

Lattice Radiant Software IP User Guide 12

Figure 1: PMI Instantiation Command Example

4. If using stand-alone synthesis and simulation tools, add the PMI soft IP
from the <install_path>/ip/pmi/ directory.

5. Save and close the source file.

Encrypting IPs

The Radiant software provides the IP security based on the Recommended
Practice for Encryption and Management of Electronic Design Intellectual
Property (IP) of the IEEE 1735-2014 version 1 standard.

The implementation enables securing IP while ensuring the design flow and
the interoperability across different EDA tools. Upon entering the design into
the Radiant software, you select the desired level of security by encrypting the
HDL source files. The set security level propagates through the design and
impacts the visibility of secured objects in various Radiant tools. The current
Radiant software supports encryption of VHDL and Verilog HDL files. The
encrypted IP can be processed by other third-party EDA tools including Aldec
Active-HDL, Cadence NCSim, Mentor Graphics ModelSim, Synopsys Synplify
Pro, and Synopsys VCS simulator.

IP Encryption Flow

IP encryption flow enables you to protect your IP design. Following the
industry standard, the Radiant software, through the IP encryption flow, allows
the partnership between the IP Vendor, supported EDA vendor, and Lattice.

Verilog

pmi_add
#(
 .pmi_data_width (),
 .pmi_sign (),
 .pmi_family (),
 .module_type ()
) <your_inst_label> (
 .DataA (), // I:
 .DataB (), // I:
 .Cin (), // I:
 .Result (), // O:
 .Cout (), // O:
 .Overflow () // O:
);

VHDL

<your_inst_label> : pmi_add
generic map (
 pmi_data_width => ,
 pmi_sign => ,
 pmi_family => ,
 module_type =>
)
port map (
 DataA => , -- I:
 DataB => , -- I:
 Cin => , -- I:
 Result => , -- O:
 Cout => , -- O:
 Overflow => -- O:
);

Change instance name

Add parameter values

Add signal names

LATTICE RADIANT SOFTWARE IP USER GUIDE : Encrypting IPs

Lattice Radiant Software IP User Guide 13

Figure 2: IP Encryption Flow

The encryption flow uses symmetric and asymmetric encryption methods to
maximize the design security. The symmetric method only involves a single
symmetric key for both, encryption and decryption. The asymmetric method
involves the public-private key pair. The public key is published by a vendor
and is used by the Radiant software. The private key is never revealed to the
public.

The Radiant software supports these cryptographic algorithms:

 AES-128/AES-256: symmetric algorithm used to encrypt the content of
the HDL source file.

 RSA-2048: asymmetric algorithm used to obfuscate a key used in HDL file
encryption. The RSA is defined by the public-private key pair. You must be
familiar with both keys in order to perform RSA decryption.

HDL File Encryption Flow

The overall HDL file encryption flow is summarized in these steps:

 The source file of the IP design is AES encrypted using a symmetric
session key. The AES encryption uses the CBC-128 or CBC-256
algorithm. In the source files, this section is referred to as a data block.

 The session key is RSA encrypted using the vendor’s public key. In the
source files, this section is referred to as a key block. Multiple key blocks
may be present in the source file.

 The encrypted session key and the encrypted design are merged to file
generally named the Encrypted RTL

LATTICE RADIANT SOFTWARE IP USER GUIDE : Packaging IP Using Radiant IP Packager

Lattice Radiant Software IP User Guide 14

Each encrypted source file contains a single data block and one or more key
blocks. The number of key blocks depends on the number of provided public
keys.

During the next step in the design flow, typically synthesis, the Encrypted RTL
is decrypted to access the original IP design, as shown in the following figure.

Figure 3: HDL Encryption Flow

By separating the encryption of data and key, you can use public keys from
different vendors to encrypt the same HDL file.

For specific steps and information on how to encrypt HDL files in the Radiant
software, refer to the following section in the Radiant software online help:
User Guides > Securing the Design.

Packaging IP Using Radiant IP Packager
Radiant IP Packager allows external Intellectual Property (IP) developers —
including third-party IP providers and customers — to prepare and package IP
in the Radiant IP format.

IP packages must contain other file types, including:

 Metadata (.xml)

 RTL (<IP_name>.v and v.)

 Documentation (introduction.html, user guide, etc).

IP packages can also contain certain non-mandatory file types, including:

 Plugin (.py)

 LDC (.ldc)

 Testbench (.v)

NOTE

To decrypt an encrypted source file, you must perform the IP encryption flow steps in
the reverse order.

LATTICE RADIANT SOFTWARE IP USER GUIDE : Packaging IP Using Radiant IP Packager

Lattice Radiant Software IP User Guide 15

 License Agreement (.txt)

A typical IP packaging procedure consists of the following steps:

1. The Radiant IP Packager encrypts the RTL files automatically if an IEEE
P1735-2014 pragma is specified in RTL files.

2. The Radiant IP Packager provides design rule check (DRC) on the files.
For example, the DRC will check whether or not the metadata.xml syntax
is valid.

3. The Radiant IP Packager inserts a default license agreement file if you
don’t specify one.

4. The Radiant IP Packager tool allows developers to combine multiple files
associated with the IP into a single deployable .IPK file. This file can then
be used in the Radiant software environment to install the IP package in
the user design environment.

Preparing IP Files for Packaging
IP Packager supports the following file types:

 Metadata file (.xml)

 RTL files (.v)

 LDC file (.ldc)

 Plugin file (.py)

 Document Files (.htm, .txt)

 License Agreement (.txt)

 Key (.txt)

The following describes each file type.

Metadata file (.xml) The metadata.xml file contains key information on the
IP. For more information on the structure of the metadata.xml file, refer to
Appendix A: “Metadata (.xml) File Structure” on page 22.

LATTICE RADIANT SOFTWARE IP USER GUIDE : Packaging IP Using Radiant IP Packager

Lattice Radiant Software IP User Guide 16

RTL files (.v) This file is the RTL implementation of the IP. The following is
an example of the contents of a typical .v file, written in Verilog:

The IP component package has an optional parameterized testbench, which
shares parameters used in IP implementation.

The IP Packager copies testbench files from the IP component package and
creates two files based on the user configuration:

 dut_params.v

Contains the parameters used in IP implementation.

The name “dut_params.v” is fixed.

The following is an example of dut_params.v:

module module_01
#(

parameter integer in_a_width = 8,
parameter integer in_b_width = 8,
parameter in_b_en = "True",
parameter integer out_width = 16//,

) (
clk,
rst_n,
in_a,
in_b,
result

);

localparam integer A_WDT = in_a_width;
localparam integer B_WDT = in_b_width;
localparam integer O_WDT = out_width;
localparam IB_EN = in_b_en;

input clk;
input rst_n;
input[A_WDT - 1:0]in_a;
input[B_WDT - 1:0]in_b;
input[O_WDT - 1:0]result;

generate
if (IB_EN == "True")
begin

assign result - in_a;
end
else
begin

assign result = (in_a, in_b);
end

endgenerate

endmodule // module_01

localparam ENABLE_A = 1;
localparam ENABLE_B = 0;
localparam BUS_WIDTH = 2;

LATTICE RADIANT SOFTWARE IP USER GUIDE : Packaging IP Using Radiant IP Packager

Lattice Radiant Software IP User Guide 17

 dut_inst.v

Contains the IP instance instantiation. The connected wire name is the
same as the port name.

The name "dut_inst.v" is fixed.

The following is an example of dut_inst.v.

LDC file (.ldc) The template constraint file is written in Tcl. Settings of the IP
can be used as variables in the template file, so that it can be further
customized.

The IP generation engine will add additional information in the header of the
template constraint file. The additional information includes:

 Architecture, device, and package names

 User configurations

The following is an example template constraint file. Availability of the
create_clock constraint is controlled by variable $i2c_left_enable, and the
period value of the constraint is controlled by variable $i2c_left_period.

The following is an example of a generated constraint file.

Plugin file (.py) Python expressions can be used in the metadata file to
implement complex logic or calculations. However, Python expressions have
limited capability if restricted to a single line.

To support complex logic, you can define any additional Python functions in
the plugin.py file of the IP package, and then call the functions in Python
expressions in the metadata file.

The following Python modules can be used in plugin.py:

 json

INST_NAME u_INST_NAME
(
 .PORT_NAME (PORT_NAME)
)

if { $i2c_left_enable == 1 } {
 create_clock -name {clk0} -period $i2c_left_period [get_nets
SBCLKi_c]
}

$architecture = "iCE40UP"
$device = "iCE40UP5K"
$package = "UWG30"
$i2c_left_enable = 1
$i2c_left_period = 1000

if { $i2c_left_enable == 1 } {
 create_clock -name {clk0} -period $i2c_left_period [get_nets
SBCLKi_c]
}

LATTICE RADIANT SOFTWARE IP USER GUIDE : Packaging IP Using Radiant IP Packager

Lattice Radiant Software IP User Guide 18

 xml

 textwrap

 collections

 os

 re

 traceback

 functools

 warnings

 shutil

 math

 itertools

 operator

 time

 weakref

 StringIO

 keyword

 copy

 codecs

 stat

 types

 string

 lxml

The following is an example of the contents of a plugin.py file:

def calc_out_width():
 ret_val = in_a_width

if in_b_en:
 ret_val += in_b_width

return ret_val

Document Files (.htm, .txt) The mandatory /doc directory contains:

Mandatory introduction file. The file name should be “introduction.html”. The
file should include the following information:

 Description

 Devices Supported

 Reference Documents

 Revision History

LATTICE RADIANT SOFTWARE IP USER GUIDE : Packaging IP Using Radiant IP Packager

Lattice Radiant Software IP User Guide 19

The following is an example of a typical “introduction.html” file. This example
is for the Adder component:.

The following shows how a typical “introduction.html” page appears when
displayed in the IP Information tab of the Radiant IP Catalog tool.

The /doc directory can also contain other optional documents.

License Agreement (.txt) Specify a license agreement in a text file. The
Radiant IP Packager inserts a default license agreement file if you don’t
specify one.

<HEAD>
 <TITLE>Adder</TITLE>
</HEAD>
<BODY>
 <H1>Adder</H1>
 <H2>Description</H2>
 <P>A two-input adder that performs signed/unsigned addition
of the data from inputs data_a and data_b with an optional cin
carry input. The output result carries the Sum of the addition
operation with an optional cout carry output.</P>
 <H2>Devices Supported</H2>
 <P>iCE40UP</P>
 <H2>References</H2>

 <P>
 <A HREF="http://www.latticesemi.com/
view_document?document_id=52235" CLASS="URL">User Guide

 <H2>Revision History</H2>
 <TABLE cellpadding="10">
 <TR>
<TD>1.0.0</TD> <TD>Initial release.</TD>
 </TR>
 </TABLE>
</BODY>

LATTICE RADIANT SOFTWARE IP USER GUIDE : Packaging IP Using Radiant IP Packager

Lattice Radiant Software IP User Guide 20

Directory Structure
This section describes the typical directory structure of a Radiant IP package.

The example below represents the folder tree for a “PLL” IP package. As
shown, the top-level folder has the same name as the IP. The metadata.xml
file does not reside in a subfolder.

There are four subfolders and one file inside the top folder, namely:

 The doc subfolder contains the user guide for the IP.

 The plugin subfolder contains a Python file embedding all necessary
functions for parameter validation and checking.

 The rtl subfolder contains a parameterized RTL file of the IP. During IP
generation, this file is instantiated into the wrapper with the parameters
settings selected by the user.

 The testbench subfolder contains an optional parameterized testbench for
the generated IP.

Running Radiant IP Packager
Radiant IP Packager is a stand-alone tool. Radiant IP Packager can be run
from both Windows and Linux.

To run IP Packager:

 In Windows, go to the Windows Start menu and choose Programs >
Lattice Radiant Software > Accessories > IP Packager.

 In Linux: from the ./<Radiant_software_install_path>/bin/lin64 directory,
enter the following on a command line:

./ippackager

The IP Packager dialog box opens.

Generating an IPK File with IP Packager
IP Packager provides a user interface for you to select files and pack them
into an IPK file. The IP Packager engine encrypts RTL files if IEEE P1735 V1
pragmas are specified in RTL source.

LATTICE RADIANT SOFTWARE IP USER GUIDE : Packaging IP Using Radiant IP Packager

Lattice Radiant Software IP User Guide 21

To generate an IPK file with IP Packager:

1. In the IP Packager dialog box, click Add.

2. In the Open dialog box, choose the file type that you wish to add from the
dropdown menu. File types include:

 Metadata file (.xml)

 RTL files (.v)

 Constraint files (.ldc)

 Plugin file (.py)

 Document files (.htm, .txt)

 License Agreement (.txt)

To remove any unwanted file, highlight the file in the Input files box and
click Remove.

3. When all IP files are listed in the Input files box, in the Output Directory
box, browse to the location where you want the IPK file to be generated.
The default location is:

C:\Users\<username>\RadiantIPLocal\<IP_name>

4. Click Generate. The IPK file is generated in the default location.

Installing IP Created with IP Packager
into IP Catalog
You can download and add IP created with IP Packager into IP Catalog.

To download and add a User IP:

1. In the Radiant IP Catalog, click on the Install a User IP button.

2. In the Select user IP package file to install dialog box, browse to the
Radiant Software IP Package (.ipk) file, and click Open.

 The IP will be installed into a folder in the your personal directory. For
example: C:/Users/<username>/RadiantIPLocal/<IP_name>.

 The IP will be added into IP Catalog.

Lattice Radiant Software IP User Guide 22

Appendix A

Metadata (.xml) File Structure

This appendix describes the structure and syntax of the metadata.xml file.

The metadata.xml file contains information on the IP including:

 Ports

 Parameters

 Attributes and functions for validating their intervals and relationships

 How the IP parameters will appear in the GUI. For example, some
parameters might be visible or hidden, editable or fixed depending on
other parameters values selected by the user.

The metadata.xml name for this file is mandatory for all IPs.

Metadata is provided in an XML file. Metadata serves the following functions:

 Contains the definitions of IPs ports.

 Contains the definitions of parameters, alongside their valid intervals and
relationships.

 Controls creating an appropriate dialog box, such as specifying the way in
which each parameter is presented graphically.

 Controls other aspects of how the IP is generated and synthesized.

When you make the necessary parameter selections and generate the IP, the
generated RTL will contain the instance of IP specific to the specified
parameters (such as appropriately set ports). There is a wrapper generated
by the Python script which instantiates the IP’s RTL while applying the
selected parameters. The same Python script checks whether the selected
combination of parameters is legal, and performs all necessary calculations.
Only one Python script is present in the directory structure of each IP, and it
contains all necessary functions.

METADATA (.XML) FILE STRUCTURE :

Lattice Radiant Software IP User Guide 23

The root node of the XML file is <ip>, which consists of:

 Attribute: "version"

 Three mandatory child nodes: <general>, <settings> and <ports>

 Two optional child nodes: <componentGenerators> and
<estimatedResources>

The following is an example of Metadata layout:

The attribute “version” records the version of the XML metadata format.
Current value is 1.0.

The following table lists child nodes of the root node.

The <general> node describes general information about a soft IP, for
example, name, version, category, etc. The following table describes child
nodes of the <general> node.

<lsccip:ip xmlns:lsccip="http://www.latticesemi.com/XMLSchema/
Radiant/ip" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" version="1.0">
 <lsccip:general>

 </lsccip:general>
 <lsccip:settings>

 </lsccip:settings>
 <lsccip:ports>

 </lsccip:ports>
</lsccip:ip>

Child Node Description

general General information of the soft IP

settings Configurable settings of the soft IP

ports Ports of the soft IP

Child Node Mandatory Description

vendor No Soft IP vendor. Official soft IPs should have the vendor’s name.

For example, “latticesemi.com”.

name Yes Name of the soft IP. The name is used to identify the soft IP, so it
should be unique.

For example, "adder"

display_name No Name to be displayed in the software. If “display_name” is not
set, the software displays “name” directly.

For example, “Adder”

METADATA (.XML) FILE STRUCTURE :

Lattice Radiant Software IP User Guide 24

The <settings> node should contain one or more <setting> nodes. In an IP
instance package, Verilog parameters are used to customize the soft IP. All
user configurable parameters should be added to the <settings> section as
<setting> nodes.

Beside parameters, you can also add <settings> nodes for user input only.
Both parameters and inputs could be used in Python expressions to do
dynamic evaluation.

The following table lists attributes of the <settings> nodes.

library No Library of the soft IP. If “library” is not set, the default value “ip”
will be used.

For example, “ip”, “interface”.

version Yes Version of the soft IP.

For example, 1.0.0.

category Yes Category of the soft IP. Category could be hierarchical. Levels
are separated by “,”.

For example, Memory_Modules,Distributed_RAM

min_radiant_version Yes The minimal Radiant version, which supports the soft IP.

For example, 1.0.

supported_products No FPGA products supported by the soft IP.

Attribute Value Mandatory Description

id valid Python identity Yes The unique ID of the setting, which can also be
referred as:

 variable name in Python expressions

 variable name in parameterized template
constraint file

For example, id=”num_outputs”

title String No Short title of the setting. If title is not specified, id will
be used.

For example, title=”Number of Output”

type param, input Yes A setting could be a Verilog parameter or user input.
Both param and input settings can be used to
compute values of other param and input settings.
param and input only differ in generated file.
param is written out but input is ignored.

For example, type=”param”

value_type bool, string, int, float, path Yes Type of the value. Supported types are bool, int,
float, string and path. The path type indicates
a string which represents a path.

For example, value_type=”int”

METADATA (.XML) FILE STRUCTURE :

Lattice Radiant Software IP User Guide 25

conn_mod String Yes Name of the IP that this setting applies to.

For example, conn_mod=”pll”

default Python expression No Default value of the setting. Without default attribute,
the first item from the options attribute is used. If
there are no options, the initial value of setting will be
set to 0 for int, 0.0 for float, “” for string and
False for bool.

For example, default=”1.0”

value_expr Python expression No Python expression to compute the value of the
setting. This attribute takes effects only when the
setting is disabled.

For example,
value_expr="calc_extdiv_val_add(extdiv_en,
extdiv_port_sel)"

(calc_extdiv_val_add is defined in plugin.py

extdiv_en and extdiv_port_sel are the setting IDs in
metadata.xml)

options Python list or list of tuples No Candidate options for the setting, which is used by
GUI to display a dropdown selector. It could be set
to a simple list or a list of tuples. If it’s a simple list,
elements are displayed and written. If it’s a list of
tuples, the 1st item in tuple is displayed and the 2nd
item in tuple is written.

For example, options=”[0.1, 0.2, 0.5, 1.0]”

output_formatter str No Control how parameter values are written in output
RTL files. Currently, only str is supported.

str: parameter values are written as strings

For example, output_formatter=”str”

bool_value_mapping Python tuple or list with 2
string elements

No The map to map bool values to dedicated strings.
By default, bool values are written as 1, 0.

For example, bool_value_mapping=”(‘True’, ‘False’)”

editable Python expression No Python expression to determine if the setting is
editable. When a setting is not editable, it will be
grayed out in GUI display and its value will be
computed from value_expr. Otherwise user input
will be used.

For example, editable="(FEEDBACK_PATH ==
'PHASE_AND_DELAY')

(FEEDBACK_PATH is a setting ID in metadata.xml)

hidden True No Python expression to determine whether the setting
is hidden in GUI. If hidden is set to True (default is
False), the item is hidden in GUI. Current GUI only
support hidden=“True”, which cannot be changed
dynamically.

For example, hidden=”True”

Attribute Value Mandatory Description

METADATA (.XML) FILE STRUCTURE :

Lattice Radiant Software IP User Guide 26

The <ports> node. IP module package has some ports in its implementation.
These ports should be described in the <ports> section as <port> child nodes.
The following table lists attributes of <port> nodes.

drc Python expression No Python expression to do DRC on the setting. True
means DRC pass.

For example,
drc="check_valid_addr_pre(I2C_LEFT_ADDRESSI
NG_PRE,i2c_left_addressing_width)"

(check_valid_addr_pre is defined in plugin.py

setting ID: I2C_LEFT_ADDRESSING_PRE and
i2c_left_addressing_width are IDs of other settings)

regex Regular expression No Regular expression to do DRC on the setting.

value_range Python tuple or list with 2
comparable elements

No Valid range of setting value, which is used to do
DRC on the setting. The maximum value can be
infinity “float(‘inf’)”.

For example, value_range="(0, 1023)
if(i2c_right_enable) else (-9999, 9999)"

description String No Detailed description of the setting.

group1 String No Group the settings, and be used to display on GUI

For example, group1= "Output Setting"

group2 String No Group the settings, and be used to display on GUI

Attribute Value Mandatory Description

Attribute Value Mandatory Description

name Valid Verilog port
name

Yes Name of port.

For example, name=”Clk”

dir in, out, inout Yes Direction of port.

For example, dir=”in”

range Python tuple or
list with 2 int
elements

No Range of this port. It should be a Python expression
whose evaluation result is a tuple or array with 2
elements.

For example, range="(A_WDT-1, 0)"

(A_WDT is a setting ID)

conn_mod Valid Verilog
module name

Yes Name of IP core module to which this port connects.

For example, conn_mod=”counter”

conn_port Valid Verilog port
name

No Name of port of IP core module to which this port
connects. name will be used if conn_port is not
specified.

For example, conn_port=”Clk”

METADATA (.XML) FILE STRUCTURE :

Lattice Radiant Software IP User Guide 27

The <componentGenerators> node contains a list of componentGenerator
elements. Each componentGenerator element defines a generator that is run
on generated IP instance package. The description of componentGenerators
follows IP-XACT format.

The <estimatedResources> node contains a list of estimatedResource
elements. Each estimatedResource element defines the formula to calculate
one type of resource used in the IP instance package.

A full description of a soft IP might be large. Metadata.xml supports to build a
large XML file from small manageable chunks. The approach is implemented
by XInclude.

stick_high Python
expression

No Python script. True: tie this port to 1.

For example, stick_high=”True”

stick_low Python
expression

No Python script. True: tie this port to 0.

For example, stick_low="no_seq_pins()"

(no_seq_pins is defined in plugin.py)

stick_value Python
expression

No Python script. Tie port to the evaluation result of this
attribute.

dangling Python
expression

No Python script. True: keep this port unconnected.

For example, dangling="not USE_COUT"

(USE_COUT is a setting ID)

bus_interface Valid bus
interface name

No Bus interface name defined in <busInterfaces> node.

For example, bus_interface=” ahb_slave_0”

<lsccip:componentGenerators>
 <lsccip:componentGenerator>
 <lsccip:name>memGenerator</lsccip:name>
 <lsccip:generatorExe>script/mem_gen.py</
lsccip:generatorExe>
 </lsccip:Generator>
</lsccip:Generators>

<lsccip:estimatedResources>
 <lsccip:estimatedResource>
 <lsccip:name>LUT4</lsccip:name>
 <lsccip:number>WIDTH * 4</lsccip:number>
 </lsccip:Resource>
</lsccip:Resources>

Lattice Radiant Software IP User Guide 28

Revision History

The following table gives the revision history for this document.

Date Version Description

11/05/2019 2.0 Updates for Radiant 2.0 software.

04/23/2019 1.0 Initial Release.

	Lattice Radiant Software IP User Guide
	Contents
	Lattice Radiant Software IP User Guide
	Designing with IP and PMI
	PMI or IP Catalog?
	Creating IP Catalog Components

	Encrypting IPs
	IP Encryption Flow

	Packaging IP Using Radiant IP Packager
	Preparing IP Files for Packaging
	Running Radiant IP Packager
	Generating an IPK File with IP Packager
	Installing IP Created with IP Packager into IP Catalog

	Metadata (.xml) File Structure
	Revision History

